

Learning Highcharts

Create rich, intuitive, and interactive JavaScript data
visualization for your web and enterprise development
needs using this powerful charting library — Highcharts

Joe Kuan

 BIRMINGHAM - MUMBAI

Learning Highcharts

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2012

Production Reference: 1131212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-908-3

www.packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmai l .com)

Credits

Author
Joe Kuan

Reviewers
Torstein Hønsi

Tomasz Nurkiewicz

Gert Vaartjes

Acquisition Editor
Kartikey Pandey

Lead Technical Editor
Ankita Shashi

Technical Editors
Devdutt Kulkarni

Ankita Meshram

Pooja Pande

Copy Editors
Aditya Nair

$O¿GD�3DLYD

Project Coordinator
Abhishek Kori

Proofreader
Maria Gould

Indexer
Monica Ajmera Mehta

Graphics
Aditi Gajjar

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

Foreword

Back in 2003, when I wanted to implement charts for my home page, Flash-based
charting solutions were totally dominating the market. I resented the idea of meeting
my nontechnical readers with a prompt to install a browser plugin just to view my
content, so I went looking for other solutions. There were server-side libraries that
produced a static chart image, but they didn't provide any form of interactivity. So I
built a chart based on an image created dynamically on the server, overlaid with tool
tips created in JavaScript. This still runs on my website and has survived the coming
RI�WKH�WRXFK�DJH�ZLWKRXW�PRGLÀFDWLRQ��%XW�,�VWLOO�KDG�DQ�LGHD�RI�VRPHWKLQJ�VLPSOHU��
By 2006 all major browsers had support for vector graphics through either SVG or
VML, so this seemed the way to go. I started working on Highcharts on weekends
and vacations, and released it in 2009.

It was an instant success. Today, three years later, it has grown to become the
preferred web charting engine by many, perhaps most, developers. Our bootstrapper
company has nine persons working full time on developing, marketing, and selling
Highcharts, and we have sold more than 22,000 licenses. Our clients include more
than half of the 100 greatest companies in the world.

I was thrilled when Packt Publishing contacted me for reviewing this book. I
soon realized that the author, Joe Kuan, has a tight grip on Highcharts, jQuery,
and general JavaScript. He also does what I love the most to see from Highcharts
XVHUV³KH�EHQGV��WZHDNV��DQG�FRQÀJXUHV�WKH�OLEUDU\��DQG�FUHDWHV�FKDUWV�WKDW�VXUSDVV�
what we even thought possible with our tool. All done step by step in increasingly
complex examples.

I can't wait to recommend this book to our users.

Torstein Hønsi

CTO, Founder

Highsoft Solutions

About the Author

Joe Kuan was born in Hong Kong and continued his education in the UK from
secondary school to university. He studied Computer Science at University of
Southampton for B.Sc. and Ph.D. After his education, he worked with different
technologies and industries in the UK for more than a decade. Currently, he
is working for iTrinegy – a company specializing in network emulation and
performance monitoring. Part of his role is to develop frontend and present complex
network data into stylish and interactive charts. He has adopted Highcharts with
iTrinegy for nearly three years. Since then, he has been contributing blogs and
software on Highcharts and Highstocks.

Apart from his busy family schedule and active outdoor lifestyle, he occasionally
writes articles for his own blog site ht tp: / / joekuan.wordpress.com and puts
some demonstrations up at ht tp: / / joekuan.org. You can contact him at
learning.highcharts@gmai l .com.

I hope this book has its place in the web publishing market. This
book is like all technical books; they are nurtured by two teams
of people—technical and personal. For the technical people, I am
grateful to Packt Publishing for asking me to write this book—an
opportunity that has never come to my mind and a valuable journey
I will look back on. To the team of reviewers; Tomasz Nurkiewicz
IRU�JLYLQJ�SXUSRVHIXO�FRPPHQWV�EHQHÀFLDO�WR�WKH�UHDGHUV��DQG�
Torstein Hønsi and Gert Vaartjes for making sure of technical
correctness, and Kartikey Pandey and Ankita Shashi for improving
the readability. For the people whom I care about the most, I am
thankful to my loving parents for showing me the importance
of kindness and hard work in life, and my wife, for continual
unconditional support and patience in helping me get this book
sitting on a shelf. Finally, for my big little boy, Ivan:

"A thousand miles of journey, starts beneath the feet" – Lao Tzu

About the Reviewers

Torstein Hønsi is a programmer and entrepreneur who has a passion for frontend
developing and user interface design. He is the creator and lead developer of the
Highcharts JavaScript library, and the CTO of Highsoft Solutions, the software
company founded to manage Highcharts. Apart from work, he enjoys spending time
with his family, preferably in the great outdoors of Norway.

Tomasz Nurkiewicz is a Java developer with six years of experience, typically
working on the server side. He is also a Scala enthusiast. Currently, he is developing
a track and trace system for Kezzler AS in Oslo, Norway. Tomasz strongly believes
in the power of testing and automation. He claims that every functionality not tested
automatically is not trustworthy and will eventually break.

Tomasz happily implements monitoring and data visualization solutions, hence his
interest in client-side JavaScript charting libraries. He is also a technical blogger and
blogs at ht tp: / /nurkiewicz.blogspot .com.

Gert Vaartjes started as a specialist in geographical information systems. While
customizing these programs, he was intrigued by what's actually under the hood.
Here started his passion for programming. This programming journey led him
through all kinds of programming languages. As a technical consultant, he worked
for several governmental and nongovernmental companies. He has been developing
software for more than 10 years. Now he's working as a programmer at Highsoft
Solutions, focusing on backend integration of the Highcharts product.

:KHQ�KH�LV�QRW�SURJUDPPLQJ��\RX�FDQ�ÀQG�KLP�ZRUNLQJ�RQ�KLV�VPDOO�VFDOH�IDUP�
in Norway, where he grows potatoes, chases sheep, chops wood, and does other
basic stuff.

www.PacktPub.com

6XSSRUW�¿OHV��H%RRNV��GLVFRXQW�RIIHUV�
and more
You might want to visit www.PacktPub.com�IRU�VXSSRUW�ÀOHV�DQG�GRZQORDGV�UHODWHG�WR�
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
ÀOHV�DYDLODEOH"�<RX�FDQ�XSJUDGH�WR�WKH�H%RRN�YHUVLRQ�DW�www .PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

ht tp: / /PacktLib.PacktPub.com

'R�\RX�QHHG�LQVWDQW�VROXWLRQV�WR�\RXU�,7�TXHVWLRQV"�3DFNW/LE�LV�3DFNW
V�RQOLQH�GLJLWDO�ERRN�
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
�� Fully searchable across every book published by Packt
�� Copy and paste, print and bookmark content
�� On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Table of Contents
Preface 1
Chapter 1: Web Charts 7

A short history of web charting 7
HTML image map (server-side technology) 8
Java applet (client side) and servlet (server side) 9
Adobe Shockwave Flash (client side) 11

The uprising of JavaScript and HTML5 12
HTML5 (SVG and canvas) 12

SVG (Scalable Vector Graphics) 12
Canvas 14

JavaScript charts on the market 15
jqPlot 15
amCharts 16
Ext JS 4 Charts 16
YUI 3 Charts 16
FusionCharts 17
JS Charts 17
Flot and Flotr 17

Why Highcharts? 18
Highcharts and JavaScript frameworks 18
Presentation 19
License 20
Simple API model 20
Documentations 20
Openness (feature request with user voice) 21

Highcharts – a quick tutorial 22
Directories structure 22

Summary 30

Table of Contents

[ii]

&KDSWHU����+LJKFKDUWV�&RQ¿JXUDWLRQV� ��
&RQ¿JXUDWLRQ�VWUXFWXUH� ��
Understanding Highcharts layouts 32

Chart margins and spacings 35
Chart label properties 36

Title and subtitle alignments 38
Legend alignment 39
Axis title alignment 39
Credits alignment 40

Experimenting with the automatic layout 41
([SHULPHQWLQJ�ZLWK�WKH�¿[HG�OD\RXW� ��

Framing the chart with axes 45
Accessing the axis data type 45
Adjusting intervals and background 48
Using plot lines and plot bands 53
Extending to multiple axes 56

5HYLVLWLQJ�WKH�VHULHV�FRQ¿JXUDWLRQ� ��
([SORULQJ�3ORW2SWLRQV� ��
6W\OLQJ�WKH�WRROWLSV� ��

Formatting the tooltips in HTML 69
Using the callback handler 70
Applying a multiple series tooltip 71

Animating charts 72
Expanding colors with gradients 74
Summary 78

&KDSWHU����/LQH��$UHD��DQG�6FDWWHU�&KDUWV� ��
,QWURGXFLQJ�OLQH�FKDUWV� ��

Extending to multiple series line charts 82
6NHWFKLQJ�DQ�DUHD�FKDUW� ��
0L[LQJ�OLQH�DQG�DUHD�VHULHV� ��

Simulating a projection chart 90
Contrasting spline with step line 92
Extending to a stacked area chart 93
Plotting charts with missing data 96

&RPELQLQJ�VFDWWHU�DQG�DUHD�VHULHV� ��
Polishing a chart with an artistic style 100

Summary 104
&KDSWHU����%DU�DQG�&ROXPQ�&KDUWV� ���
,QWURGXFLQJ�FROXPQ�FKDUWV� ���

Overlapped column chart 108
Stacking and grouping a column chart 109

Table of Contents

[iii]

Mixing the stacked and single columns 111
Comparing the columns in stacked percentages 112

Adjusting column colors and data labels 113
,QWURGXFLQJ�EDU�FKDUWV� ���

Giving the bar chart a simpler look 118
Constructing a mirror chart 120

Extending to a stacked mirror chart 124
&RQYHUWLQJ�D�VLQJOH�EDU�FKDUW�LQWR�D�KRUL]RQWDO�JDXJH�FKDUW� ���
Sticking the charts together 128
Summary 130

Chapter 5: Pie Charts 131
8QGHUVWDQGLQJ�WKH�UHODWLRQVKLS�RI�FKDUW��SLH��DQG�VHULHV� ���
Plotting simple pie charts – single series 132
&RQ¿JXULQJ�WKH�SLH�ZLWK�VOLFHG�RII�VHFWLRQV� ���
Applying a legend to a pie chart 136

Plotting multiple pies in a chart – multiple series 137
3UHSDULQJ�D�GRQXW�FKDUW�±�PXOWLSOH�VHULHV� ���
%XLOGLQJ�D�FKDUW�ZLWK�PXOWLSOH�VHULHV�W\SHV� ���
6XPPDU\� ���

&KDSWHU����*DXJH��3RODU��DQG�5DQJH�&KDUWV� ���
/RDGLQJ�JDXJH��SRODU��DQG�UDQJH�FKDUWV� ���
Plotting a speedometer gauge chart 148

Plotting a twin dials chart – a Fiat 500 speedometer 148
Plotting a gauge chart pane 149

Setting pane backgrounds 150
Managing axes with different scales 152
Extending to multiple panes 153

Gauge series – dial and pivot 156
Polishing the chart with fonts and colors 158

&RQYHUWLQJ�D�VSOLQH�FKDUW�WR�D�SRODU�UDGDU�FKDUW� ���
3ORWWLQJ�UDQJH�FKDUWV�ZLWK�PDUNHW�LQGH[�GDWD� ���
8VLQJ�D�UDGLDO�JUDGLHQW�RQ�D�JDXJH�FKDUW� ���
Summary 171

Chapter 7: Highcharts APIs 173
Understanding the Highcharts class model 174

Highcharts constructor – Highcharts.Chart 175
Navigating through Highcharts components 176

Using object hierarchy 176
Using the Chart.get method 177
Using the object hierarchy and Chart.get method 177

Table of Contents

[iv]

Using Highcharts APIs 177
&KDUW�FRQ¿JXUDWLRQV� ���
Getting data in Ajax and displaying new series with Chart.addSeries 180
Displaying multiple series with simultaneous Ajax calls 184
Extracting SVG data with Chart.getSVG 186
Selecting data points and adding plot lines 191

Using Axis.getExtremes and Axis.addPlotLine 192
Using Chart.getSelectedPoints and Chart.renderer methods 193

Exploring the series update 194
Continuous series update 196

Running the experiment 198
Applying a new set of data with Series.setData 199
Using Series.remove and Chart.addSeries to reinsert series with new data 201
Updating data points with Point.update 203
Removing and adding data points with Point.remove and Series.addPoint 206
Exploring SVG animations performance on browsers 209

Comparing Highcharts' performance on large datasets 211
Summary 213

Chapter 8: Highcharts Events 215
,QWURGXFLQJ�+LJKFKDUWV�HYHQWV� ���
Portfolio history example 217

Top-level chart 219
&RQVWUXFWLQJ�WKH�VHULHV�FRQ¿JXUDWLRQ�IRU�D�WRS�OHYHO�FKDUW� ���
Launching an Ajax query with the chart load event 221
Activating the user interface with the chart redraw event 222
Selecting and unselecting a data point with the point select and unselect events 222
Zooming the selected area with the chart selection event 223

Detail chart 226
&RQVWUXFWLQJ�WKH�VHULHV�FRQ¿JXUDWLRQ�IRU�WKH�GHWDLO�FKDUW� ���
Hovering over a data point with the mouseOver and mouseOut point events 228
Applying the chart click event 229
Changing the mouse cursor over plot lines with mouseover event 235
Setting up a plot line action with the click event 235

Stocks' growth chart example 237
Plot averaging series from displayed stocks series 238
Launching a dialog with the series click event 243
Launching a pie chart with the series checkboxClick event 244
Editing the pie chart's slice with the point click, update, and
remove events 246

Summary 248
&KDSWHU����+LJKFKDUWV�DQG�M4XHU\�0RELOH� ���
$�VKRUW�LQWURGXFWLRQ�RI�M4XHU\�0RELOH� ���
Understanding a mobile page structure 250

Table of Contents

[v]

Understanding page initialization 252
/LQNLQJ�EHWZHHQ�PRELOH�SDJHV� ���
Highcharts in touch screen environments 258
,QWHJUDWLQJ�+LJKFKDUWV�DQG�M4XHU\�0RELOH�XVLQJ�DQ�2O\PSLF�
medals table application 258

Loading up the gold medals page 259
Detecting device properties 260
Plotting a Highcharts chart on mobile device 261
Switching graph options with the jQuery Mobile dialog box 266
Changing the graph presentation with a swipeleft motion event 269
Switching graph orientation with the orientationchange event 271

Drilling down for data with the point click event 273
%XLOGLQJ�D�G\QDPLF�FRQWHQW�GLDORJ�ZLWK�WKH�SRLQW�FOLFN�HYHQW� ���
Applying the gesturechange (pinch actions) event to a pie chart 277
Summary 280

Chapter 10: Highcharts and Ext JS 281
Short introduction to Sencha Ext JS 281
A quick tour of Ext JS components 283

Implementing and loading Ext JS code 283
Creating and accessing Ext JS components 284
Using layout and viewport 285
Panel 286

GridPanel 287
FormPanel 287
TabPanel 287

Window 288
Ajax 288
Store and JsonStore 289

Example of using JsonStore and GridPanel 289
7KH�+LJKFKDUWV�H[WHQVLRQ� ���

Step 1 – removing some of the Highcharts options 291
6WHS���±�FRQYHUWLQJ�WR�+LJKFKDUWV�H[WHQVLRQ�FRQ¿JXUDWLRQ� ���
Step 3 – constructing a series option by mapping the JsonStore
data model 293
Step 4 – creating the Highcharts extension 293
3DVVLQJ�VHULHV�VSHFL¿F�RSWLRQV�LQ�WKH�+LJKFKDUWV�H[WHQVLRQ� ���

Converting a data model into a Highcharts series 295
X-axis category data and y-axis numerical values 295
Numerical values for both x and y axes 296
Performing pre-processing from store data 297

Plotting pie charts 298
Plotting donut charts 299

Table of Contents

[vi]

Module APIs 300
addSeries 301
removeSerie and removeAllSeries 301
setTitle and setSubTitle 301
draw 302

Event handling and export modules 302
Extending the example with Highcharts 302

Displaying a context menu by clicking on a data point 309
$�FRPPHUFLDOO\�5LFK�,QWHUQHW�$SSOLFDWLRQ�ZLWK�+LJKFKDUWV�±�$SS4R6� ���
Summary 313

Chapter 11: Running Highcharts on the Server Side 315
5XQQLQJ�+LJKFKDUWV�RQ�WKH�VHUYHU�VLGH� ���
+LJKFKDUWV�RQ�WKH�VHUYHU�VLGH�� ���

Using Xvfb and web browsers (Unix solution) 317
Setting up a Highcharts export example on the client side 317
Installing Xvfb and a web browser 320
Starting up the Xvfb server 321
Applying server-side change 322
Running the server task 322

Rhino and Batik (Java solution) 323
Node.js/Node and Node-Highcharts (JavaScript solution) 324

Installing Node and modules 324
Setting up the Node server 325
Running the Node-Highcharts module 325
Starting the Node server and issuing a URL query 327

PhantomJS (headless webkit) 327
Preparing the series data script 328
Preparing the PhantomJS script 328

Comparison between the approaches 331
Summary 332

Index 333

Preface

Learning Highcharts aims to be the missing manual for Highcharts from every angle.
It is written for web developers who would like to learn about Highcharts using the
following features included in the book:

�� A step-by-step guide on building presentable charts from basic looking ones
�� Plenty of examples with real data covering all the Highcharts series

types—line/spline, column, pie, scatter, area range, column range,
gauge, and polar

�� Subject areas that haven't yet been covered in online reference manuals
and demos such as chart layout structure, color shading, series update
performance, and so on

�� Applications demonstrating how to create dynamic and interactive charts
using Highcharts' APIs and events handling

�� Applications demonstrating how to integrate Highcharts with a mobile
framework such as jQuery Mobile and a Rich Internet Application
framework such as Ext JS

�� Applications demonstrating how to run Highcharts on the server side for
automating charts generation and export their graphical outputs

This book is not a reference manual as the Highcharts team has already done an
H[FHOOHQW�MRE�LQ�SURYLGLQJ�D�FRPSUHKHQVLYH�RQOLQH�UHIHUHQFH��DQG�HDFK�FRQÀJXUDWLRQ�
is coupled with jsFiddle demos. This book is also not aiming to be a chart design
guide or not tutorial for programming design with Highcharts.

In short, this book shows you what you can do with Highcharts.

Preface

[2]

What this book covers
Chapter 1, Web Charts, describes how web charts have been done since the birth
of HTML to the latest HTML 5 standard with SVG and canvas technologies. This
chapter also gives a short survey of charting software on the market using the HTML
5 standard and discusses why Highcharts is a better product.

Chapter 2, +LJKFKDUWV�&RQÀJXUDWLRQV��FRYHUV�WKH�FRPPRQ�FRQÀJXUDWLRQ�RSWLRQV�LQ�
chart components with plenty of examples and explains how the chart layout works.

Chapter 3, Line, Area, and Scatter Charts, demonstrates from plotting a simple line,
area, and scatter charts to a poster-like chart including all three series types.

Chapter 4, %DU�DQG�&ROXPQ�&KDUWV, demonstrates bar and column charts as well as
various derived charts such as stacked chart, percentage chart, mirror chart, group
chart, overlap chart, mirror stacked chart, and horizontal gauge chart.

Chapter 5, Pie Charts, demonstrates how to build various charts, from a simple pie
chart to a multiseries chart, such as multiple pies in a chart and a concentric rings pie
chart, that is, a donut chart.

Chapter 6, *DXJH��3RODU��DQG�5DQJH�&KDUWV, gives a step-by-step guide on constructing
a twin dial speedometer and demonstrates polar chart characteristics and its
similarity to a cartesian chart. It also illustrates the use of range data on area and
column range charts.

Chapter 7, Highcharts APIs, explains the usage of Highcharts APIs and illustrates this
by using a stock market demo to draw dynamic charts. The chapter discusses the
use of different methods to update the series and analyses the performance of each
method on various browsers, as well as the scalability of Highcharts.

Chapter 8, Highcharts Events, explains Highcharts events and demonstrates
them through various user interactions with the charts from the portfolio
application demos.

Chapter 9, +LJKFKDUWV�DQG�M4XHU\�0RELOH, gives a short tutorial on the jQuery Mobile
framework and demonstrates how to integrate it with Highcharts by creating a
mobile web application browsing an Olympic medals table. The chapter also covers
the use of touch-based and rotate events with Highcharts.

Preface

[3]

Chapter 10, Highcharts and Ext JS, gives a short introduction on Sencha's Ext JS and
describes the components likely to be used in an application with Highcharts. It
also shows how to use a module, Highcharts extension, in order to plot Highcharts
graphs within an Ext JS application.

Chapter 11, 5XQQLQJ�+LJKFKDUWV�RQ�WKH�6HUYHU�6LGH, describes different approaches for
running Highcharts on the server side for automating chart generation and exporting
WKH�FKDUWV�LQWR�69*�RU�LPDJH�ÀOHV�

What you need for this book
Readers are expected to have basic knowledge of web development in the
following areas:

�� Structure of HTML document and its syntax
�� Ajax

As this book is all about Highcharts which is developed in JavaScript, readers should
be comfortable with the language at an intermediate level. Highcharts is developed
as an adapter plugin to support several popular JavaScript frameworks such as
jQuery, Mootools, and Prototype. By default, Highcharts uses jQuery library, which
is the most popular amongst them. This book not only follows such choice so that all
the examples are implemented in jQuery, but also uses a very moderate way. Hence,
D�EDVLF�NQRZOHGJH�RI�M4XHU\�VKRXOG�EH�VXIÀFLHQW�DQG�SUHIHUDEO\�VRPH�NQRZOHGJH�RI�
jQuery UI would be an advantage, as it is lightly used in Chapter 7 and Chapter 8.

Who this book is for
This book is written for web developers who:

�� Would like to learn how to incorporate graphical charts into their
web applications

�� Would like to migrate their Adobe Flash charts for an HTML 5
JavaScript solution

�� Want to learn more about Highcharts through examples

Preface

[4]

Conventions
,Q�WKLV�ERRN��\RX�ZLOO�ÀQG�D�QXPEHU�RI�VW\OHV�RI�WH[W�WKDW�GLVWLQJXLVK�EHWZHHQ�
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The renderTo option instructs Highcharts
to display the graph onto the HTML <div> element with ' container ' as the ID
YDOXH��ZKLFK�LV�GHÀQHG�LQ�WKH�+70/�<body> section."

A block of code is set as follows:

<svg xmlns="ht tp: / /www.w3.org/2000/svg" version="1.1">
 <path id="curveAB" d="M 100 350 q 150 -300 300 0" stroke="blue"
stroke-width="5" f i l l="none" />
 <!-- Mark relevant points -->
 <g stroke="black" stroke-width="3" f i l l="black">
 <circle id="pointA" cx="100" cy="350" r="3" />
 <circle id="pointB" cx="400" cy="350" r="3" />
 </g>
 <!-- Label the points -->
 <g font-size="30" font="sans-serif" f i l l="black" stroke="none" text-
anchor="middle">
 <text x="100" y="350" dx="-30">A</ text>
 <text x="400" y="350" dx="30">B</ text>
 </g>
</svg>

Any command-line input or output is written as follows:

java - jar bat ik-raster izer . jar / tmp/chart .svg

New terms and important words are shown in bold. Words that you see on the
VFUHHQ��LQ�PHQXV�RU�GLDORJ�ER[HV�IRU�H[DPSOH��DSSHDU�LQ�WKH�WH[W�OLNH�WKLV���7KH�ÀUVW�
four series—UK, Germany, S. Korea, and Japan are stacked together as a single
column and US is displayed as a separate column."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www .packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
<RX�FDQ�GRZQORDG�WKH�H[DPSOH�FRGH�ÀOHV�IRU�DOO�3DFNW�ERRNV�\RX�KDYH�SXUFKDVHG�
from your account at ht tp: / /www .PacktPub.com. If you purchased this book
elsewhere, you can visit ht tp: / /www .PacktPub.com/support and register to have
WKH�ÀOHV�H�PDLOHG�GLUHFWO\�WR�\RX�

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
GR�KDSSHQ��,I�\RX�ÀQG�D�PLVWDNH�LQ�RQH�RI�RXU�ERRNV³PD\EH�D�PLVWDNH�LQ�WKH�WH[W�RU�
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
ERRN��,I�\RX�ÀQG�DQ\�HUUDWD��SOHDVH�UHSRUW�WKHP�E\�YLVLWLQJ�ht tp: / /www .packtpub.
com/support , selecting your book, clicking on the errata submission form link, and
HQWHULQJ�WKH�GHWDLOV�RI�\RXU�HUUDWD��2QFH�\RXU�HUUDWD�DUH�YHULÀHG��\RXU�VXEPLVVLRQ�
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from ht tp: / /www .packtpub.com/support .

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at quest ions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Web Charts
In this chapter you will learn the general background of web charts. This includes a
short history of how web charts used to be made before Ajax and HTML5 became
the new standard. The recent advancement in JavaScript programming will be
EULHÁ\�GLVFXVVHG��7KHQ�WKH�QHZ�+70/��IHDWXUHV³69*�DQG�FDQYDV��ZKLFK�DUH�
the main drive behind JavaScript charts, are introduced and demonstrated. This
is followed by a quick guide on the other JavaScript graphing packages that are
available on the market. Finally, an introduction of Highcharts is given, which
explains the advantages of Highcharts over the other products. In this chapter we
will cover the following:

�� A short history of web charting
�� The uprising of JavaScript and HTML5
�� JavaScript charts on the market
�� :K\�+LJKFKDUWV"

Downloading the example code
<RX�FDQ�GRZQORDG�WKH�H[DPSOH�FRGH�ÀOHV�IRU�DOO�
Packt books you have purchased from your account at
http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support
DQG�UHJLVWHU�WR�KDYH�WKH�ÀOHV�H�PDLOHG�GLUHFWO\�WR�\RX�

A short history of web charting
Before diving into Highcharts, it is worth mentioning how web charts evolved from
pure HTML with server-side technology to the current client side.

Web Charts

[8]

HTML image map (server-side technology)
This technique has been used since the early days of HTML, when server-side
operations were the main drive. Charts were only HTML images generated from the
web server. Before there was any server-side scripting language such as PHP, one
of the common approaches was to use Common Gateway Interface (CGI), which
executes plotting programs (such as gnuplot) to output the images. Later, when PHP
became popular, the GD graphic module was used for plotting. One product that
uses this technique is JpGraph. The following is an example of how to include a chart
image in an HTML page:

7KH�FKDUW�VFULSW�ÀOH³pie_chart .php—is embedded inside an HTML img tag.
When the page is loaded, the browser sees the img src attribute and sends an
HTTP request for pie_chart .php. As far as the web browser is concerned, it has no
knowledge whether the .php�ÀOH�LV�DQ�LPDJH�ÀOH�RU�QRW��:KHQ�WKH�ZHE�VHUYHU��ZLWK�
PHP support) receives the request, it recognizes the .php extension and executes the
PHP scripts. The following is the cut down JpGraph example; the script outputs the
image content and streams it back as an HTTP response, in the same way as normal
image content would be sent back.

/ / Create new graph
$graph = new Graph(350, 250);
/ / Add data points in array of x-axis and y-axis values
$p1 = new LinePlot($datay,$datax);
$graph->Add($p1);
/ / Output l ine chart in image format back to the cl ient
$graph->Stroke() ;

Furthermore, this technology combines with an HTML map tag for chart navigation,
so that when users click on a certain area of a graph, for example a slice in a pie
chart, it can load a new page with another graph.

This technology has the following advantages:

�� Server-side technology, which means chart creation does not necessarily
require user interaction to initiate.

�� Ideal for automation tasks, for example scheduled reports or e-mail alerts
with the graph attached.

�� Doesn't require JavaScript. It is robust, pure HTML, and is light on the client.

Chapter 1

[���]

It has the following disadvantages:

�� More workload on the server side
�� Pure HTML, a limited technology—little interactions can be put on the

graphs and no animations

Java applet (client side) and servlet
(server side)
Java applet enables the web browser to execute multiplatform Java Byte Code to
achieve what HTML cannot do, such as graphics display, animations, and advanced
XVHU�LQWHUDFWLRQV��7KLV�ZDV�WKH�ÀUVW�WHFKQRORJ\�WR�H[WHQG�WUDGLWLRQDO�VHUYHU�EDVHG�
work to the client side. To include a Java applet in an HTML page, HTML applet
(deprecated) or object tags are used and require a Java plugin to be installed for
the browser.

The following is an example of including a Java applet inside an object tag. As Java
does not run on the same environment in Internet Explorer as other browsers, the
conditional comments for IE were used:

<!--[if !IE]> Non Internet Explorer way of loading applet -->
<object classid="Java:chart .class" type="appl icat ion/x- java-applet"
 height="300" width="550" >
<!--<![endif] Internet way of loading applet -->
 <object classid="clsid:8AD9C840. . ." codebase="/classes/">
 <param name="code" value="chart .class" />
 </object>
<!--[if !IE]> -->
</object>
<!--<![endif]-->

Generally, the Java 2D chart products are built from the java.awt .Graphics2D class
and the java.awt .geom package from Java Abstract Window Toolkit (AWT). Then,
the main chart library allows the users to have the option of using it on a browser
extending from the Applet class or running it on the server side extending from the
Servlet class.

Web Charts

[10]

An example of a Java product is JFreeChart. It comes with 2D and 3D solutions and
LV�IUHH�IRU�QRQSURÀW�XVH��-)UHH&KDUW�FDQ�EH�UXQ�DV�DQ�DSSOHW��VHUYOHW��RU�VWDQGDORQH�
application. The following shows part of the code used to plot data points within
an applet:

publ ic class AppletGraph extends JApplet {
 / / Create X and Y axis plot dataset and populate
 / / wi th data.
 XYPlot xyPlot = new XYPlot() ;
 xyPlot .setDataset(defaul tXYDataset) ;
 CombinedDomainXYPlot combinedDomainXYPlot =
 new CombinedDomainXYPlot() ;
 combinedDomainXYPlot .add(xyPlot) ;
 / / Create a jFreeChart object wi th the dataset
 JFreeChart jFreeChart = new JFreeChart(combinedDomainXYPlot) ;
 / / Put the jFreeChart in a chartPanel
 ChartPanel chartPanel = new ChartPanel(jFreeChart) ;
 chartPanel .setPreferredSize(new Dimension(900,600)) ;
 / / Add the chart panel into the display
 getContentPane() .add(chartPanel) ;
}

To run a chart application on the server side, a servlet container is needed, for example
Apache Tomcat. The standard web.xml�ÀOH�LV�GHÀQHG�WR�ELQG�D�85/�WR�D�VHUYOHW�

<?xml version="1.0" encoding="UTF-8"?>
<web-app id="server_charts" version="2.4" xmlns=". . ." xmlns:xsi=". . ."
 xsi :schemaLocat ion=". . .">
 <servlet>
 <servlet-name>PieChartServlet</servlet-name>
 <servlet-class>charts.PieChartServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>PieChartServlet</servlet-name>
 <ur l-pat tern>/servlets/piechart</ur l-pat tern>
 </servlet-mapping>
</web-app>

When the servlet container, such as Tomcat, receives an HTTP request with the
URL ht tp: / / localhost /servlets/piechart , it resolves the request into a servlet
application. The web server then executes the chart servlet, formats the output into
an image, and returns the image content as an HTTP response.

This technology has the following advantages:

�� Advanced graphics, animations, and user interfaces
�� Reusable core code for different deployment options—client side, server side,

or standalone applications

Chapter 1

[11]

It has the following disadvantages:

�� Applet security issues
�� If the plugin crashes, it can hang or crash the browser
�� Very CPU intensive
�� Requires Java plugin
�� Long startup time
�� Standardization problem

Adobe Shockwave Flash (client side)
Flash is widely used because it offers audio, graphics, animation, and video
capabilities on web browsers. Browsers are required to have the Adobe Flash Player
plugin installed. As for plotting graphs, this technique is the common choice (because
there weren't many other options) before the HTML5 standard became popular.

Graphing software adopting this technology basically ship with their own exported
Shockwave Flash (SWF��ÀOHV��7KHVH�6:)�ÀOHV�FRQWDLQ�FRPSUHVVHG�YHFWRU�EDVHG�
graphics and compiled ActionScript instructions to create a chart. In order for the
)ODVK�3OD\HU�WR�GLVSOD\�WKH�JUDSKV��WKH�6:)�ÀOH�LV�QHHGHG�WR�EH�ORDGHG�IURP�DQ�
HTML page. To do that, an HTML object tag is needed. The tag is internally created
and injected into the document's DOM by the software's own JavaScript routines.

Inside this object tag, it contains dimension and SWF path information for plotting
the graph, and the graph variable data is also passed inside this tag. So, as soon as
the browser sees an object �WDJ�ZLWK�VSHFLÀF�SDUDPHWHUV��LW�FDOOV�WKH�LQVWDOOHG�)ODVK�
3OD\HU�WR�SURFHVV�ERWK�WKH�6:)�ÀOH�DQG�WKH�SDUDPHWHUV��To pass the graph's plot data
from the server side to the client side's Flash Player, f lashVars is embedded inside
a param tag with the data type. The following is an example from Yahoo YUI 2:

<object id="yuiswf1" type=". . ." data="charts.swf" width="100%"
height="100%">
<param name="al lowscriptaccess" value="always">
<param name="flashVars" value="param1=value1¶m2=value2">
</object>

This technology has the following advantage:

�� Pretty graphics and animations with rich user interactions

It has the following disadvantage:

�� Similar to applets

Web Charts

[12]

The uprising of JavaScript and HTML5
7KH�UROH�RI�-DYD6FULSW�KDV�EHHQ�VKLIWHG�VLJQLÀFDQWO\�from a few simple client
routines to a dominant language for creating and managing web user interfaces. The
programming technique is nothing like what it was a decade ago. This is driven by
a group of pioneers such as Douglas Crockford who is responsible for transforming
the language for educating and making JavaScript a better language with his book
-DYD6FULSW��7KH�*RRG�3DUWV��2
5HLOO\�0HGLD���<DKRR�3UHVV; and both Sam Stephenson,
creator of Prototype JavaScript library (ht tp: / /www .prototypejs.org), and John
Resig, creator of JQuery library (ht tp: / / jquery.com), who brought JavaScript into a
framework for building more complicated web frontend software.

To give an introduction of the new programming style is beyond the scope of this
book. However, throughout this book, we will see examples in jQuery (because
Highcharts uses a jQuery library as the default choice and jQuery is the most
popular JavaScript framework). Readers are expected to know the basics of jQuery
and CSS selector syntax. Readers should also be familiar with advanced JavaScript
scripting described in the book JavaScript: The Good Parts, such as prototypes, closure,
inheritance, and function objects.

HTML5 (SVG and canvas)
In this section, two HTML5 technologies, SVG and canvas, are covered with examples.

SVG (Scalable Vector Graphics)
HTML5 is the biggest advancement so far in the HTML standard. The adoption of
the standard is growing fast (also fuelled by Apple mobile devices, which stopped
supporting Adobe Flash). HTML5 comes with many new features. Again, it is
beyond the scope of this book to cover them. However, the most relevant part to web
charting is Scalable Vector Graphics (SVG). SVG is an XML format for describing
vector-based graphics, which is composed of components such as paths, text, shapes,
color, and so on. The technology is similar to PostScript except that PostScript is a
stack-based language. As implied by its name, one of the major advantages of SVG
is that it is a lossless technology (same as PostScript); it doesn't suffer from any
pixelation effect by enlarging the image. A reduced image size will not suffer from
loss of original content.

Furthermore, the SVG can be scripted with timing animation Synchronized
Multimedia Integration Language (SMIL) and event handling. SVG technology
is supported by all the major browsers.

Chapter 1

[13]

The following is a simple example of SVG code—a single curved line between
two points:

<svg xmlns="ht tp: / /www .w3.org/2000/svg" version="1.1">
 <path id="curveAB" d="M 100 350 q 150 -300 300 0" stroke="blue"
stroke-width="5" f i l l="none" />
 <!-- Mark relevant points -->
 <g stroke="black" stroke-width="3" f i l l="black">
 <circle id="pointA" cx="100" cy="350" r="3" />
 <circle id="pointB" cx="400" cy="350" r="3" />
 </g>
 <!-- Label the points -->
 <g font-size="30" font="sans-serif" f i l l="black" stroke="none" text-
anchor="middle">
 <text x="100" y="350" dx="-30">A</ text>
 <text x="400" y="350" dx="30">B</ text>
 </g>
</svg>

The preceding SVG code is executed in the following steps:

1. Draw a path with id="curveAB" with data (d). First, move M to an absolute
coordinate (100, 350), then draw a Bézier quadratic curve from the current
position to (150, -300��DQG�ÀQLVK�DW��300, 0).

2. Group (g) the two circle elements—"pointA" and "pointB"—with the center
coordinates (100, 350) and (400, 350) respectively with a radius of 3 pixels.
7KHQ�ÀOO�ERWK�FLUFOHV�LQ�EODFN�

3. Group the two text elements A and B, started at (100, 350) and (400, 350),
which display with the sans-serif font in black, and then shift along the x axis
(dx) 30 pixels left and right, respectively.

7KH�IROORZLQJ�LV�WKH�ÀQDO�JUDSK�IURP�WKH�69*�script:

Web Charts

[14]

Canvas
Canvas is another new HTML5 standard, which is used by some JavaScript chart
software. The purpose of canvas is as its name implies; you declare a drawing area in
the canvas tag, then use the new JavaScript APIs to draw lines and shapes in pixels.
Canvas has no built-in animation routine, so the API calls in timing sequences are
used to simulate an animation. Also, there is no event handling support; developers
need to manually attach event handlers to certain regions in the canvas. Hence, fancy
chart animation may prove more complicated to implement.

The following is an example of canvas code, which achieves the same effect as the
preceding SVG curve:

<canvas id="myCanvas" width="500" height="300" style="border:1px sol id
#d3d3d3;">Canvas tag not supported</canvas>
<script type="text / javascript">
var c=document .getElementById("myCanvas");
var ctx=c.getContext("2d");
/ / Draw the quadrat ic curve from Point A to B
ctx.beginPath() ;
ctx.moveTo(100, 250);
ctx.quadrat icCurveTo(250, 0, 400, 250);
ctx.strokeStyle="blue";
ctx. l ineWidth=5;
ctx.stroke() ;
/ / Draw a black circle at tached to the star t of the curve
ctx. f i l lStyle="black";
ctx.strokeStyle="black";
ctx. l ineWidth=3;
ctx.beginPath() ;
ctx.arc(100,250,3, 0, 2* Math.PI) ;
ctx.stroke() ;
ctx. f i l l () ;
/ / Draw a black circle at tached to the end of the curve
ctx.beginPath() ;
ctx.arc(400,250,3, 0, 2* Math.PI) ;
ctx.stroke() ;
ctx. f i l l () ;
/ / Display 'A ' and 'B ' text next to the points
ctx. font="30px ' sans-serif ' ";
ctx. textAl ign="center";
ctx. f i l lText("A", 70, 250);
ctx. f i l lText("B", 430, 250);
</script>

Chapter 1

[15]

As you can see, both canvas and SVG can do the same task whereas canvas takes
more instructions:

Instead of a continuous path description in SVG, a sequence of JavaScript drawing
methods are called. Instead of a single tag with multiple attributes, multiple attribute
setting routines are called. SVG is mostly declarative, while canvas enforces an
imperative programming approach.

JavaScript charts on the market
There are many different chart libraries on offer on the market. It is impossible
to discuss each one of them. They are open source, but some of them are short-
lived in terms of not having a comprehensive set of basic charts, such as pie, line,
DQG�EDU�FKDUWV�DQG�WKH\�ORRN�UDWKHU�XQÀQLVKHG��+HUH��D�KDQGIXO�RI�FRPPHUFLDO�
and open source products are discussed, including all the basic charts (and some
with extras). Some of them still support the Flash plugin, which is an option for
backward compatibility, the reason being SVG and canvas are not supported in older
browsers. Although some of them are not free for commercial development, which is
understandable, they do offer a very affordable price.

See ht tp: / /code.google.com/p/explorercanvas/ . Many
libraries use this add-on to emulate canvas prior to IE 9.

jqPlot
jqPlot is packaged with all the basic charts, as well as gauges and candlestick. The
software is open source and totally free. jqPlot is based on the jQuery library and
uses the canvas approach for plotting charts. This product has a very similar look
and feel to Flot/Flotr. Additionally, jqPlot supports animations for column and line
charts, but not pie charts, which could be the general issue on canvas approach to
produce fancy implementations. In terms of documentation, it is probably the most
complete, compared to other free software.

Web Charts

[����]

amCharts
amCharts offers a full set of charts in both 2D and 3D with other interesting
charts such as radar, bubble, candlestick, and polar. All the charts look pretty and
support animations. amCharts is free for commercial use but a credit label will be
displayed in the upper-left corner of the charts. The only minor drawback is that the
constructor API style seems a bit clumsy. Each attribute assignment has to be done
either by calling a method or as an assignment statement explicitly, but not by the
REMHFW�VSHFLÀHU
V�VW\OH�

Ext JS 4 Charts
Ext JS is a very popular Ajax application framework developed by Sencha, a pioneer
company specializing in web application development. In Ext JS 4, it comes with the
pure JavaScript charts library unlike its predecessor Ext JS 3, which uses the YUI 2
Flash chart library. As the market trend is moving away from Adobe Flash, Sencha
responds with a home brew charting library. Ext JS 4 covers all the basic 2D charts
plus the gauge and radar charts, and all the charts support animations. The license
is free for open source and noncommercial usage, and a developer license is needed
IRU�FRPPHUFLDO�GHYHORSPHQW��$�JUHDW�EHQHÀW�RI�([W�-6���FKDUWV�LV�WKH�LQWHJUDWLRQ�ZLWK�
the comprehensive set of UI components, for example, for a chart with a storage
framework, displaying/updating both the chart and the table of data with editors is
very simple to do.

YUI 3 Charts
YUI 3 is another popular Ajax application framework under BSD license. YUI 3 has
removed their support for Flash and implemented their own JavaScript charts. The
new version comes with all the basic charts in 2D without any animation's support.
However, the line charts look just above average, and the column and pie charts
look plain and basic. Like Sencha's Ext JS, charts in YUI can be integrated with other
components supplied by the framework.

Chapter 1

[17]

FusionCharts
FusionCharts is probably one of the most impressive looking and has the most
comprehensive charts out there in the market. Not only does it come with a full-
range variety of interesting 2D charts (radar, dial, map, and candlestick) available
as a separate product, but it also offers fully interactive 3D charts. All the chart
animations are very professionally done. Basically, FusionCharts can be run in two
modes, Flash or JavaScript. For the JavaScript mode, FusionCharts use their own
extended Highcharts library to achieve the same 2D and 3D effect, and look the same
as their Flash version. Although FusionCharts comes with a higher price tag, this is
the only product that has the best looking charts and rotatable 3D charts.

JS Charts
JS Charts offers all the basic charts in both 2D and 3D looks. JS Charts uses the
HTML5 canvas technology to render charts. The bars and lines look good with
animations, however, the presentation of a pie chart is slightly behind and it offers
no animation support. The product is free for noncommercial use and commercial
license is on per domain basis. The constructor API is similar to amCharts done via
method calls.

Flot and Flotr
Flot is an MIT licensed freeware offering 2D charts but without any animation
at the time of writing. It is a canvas-based product built on the jQuery framework.
The software produces nice-looking line charts but not the bar and pie charts
(which require a plugin). Documentation is not very comprehensive and there
are not many update activities within the product. There is also another chart
package, Flotr, which is inspired by the Flot line chart style and is based on the
Prototype framework. Flotr offers all the basic canvas charts with better looking
bar and pie charts, and includes candlestick and radar charts. However, Flotr has
even fewer activities than Flot; both products seem to be heading towards the end
of their lifecycle.

Web Charts

[18]

Why Highcharts?
Although Highcharts only has the basic 2D charts, it offers very appealing and
professional looking charts in the market. It is a product which stands out by paying
attention to details, not only on the presentation side but also in other areas that
are described later on. The product was released in late 2009 and developed by a
Norwegian company called Highsoft Solutions AS, created and founded by Torstein
+¡QVL��+LJKFKDUWV�LV�QRW�WKHLU�ÀUVW�SURGXFW��EXW�E\�far their best selling one.

Highcharts and JavaScript frameworks
Although Highcharts is built with the JavaScript framework library, it is implemented
in such a way that it doesn't totally rely on one particular framework. Highcharts is
packaged with adapters, to make its interfaces to framework, pluggable.

As a result, Highcharts can be incorporated under MooTools, Prototype, or
jQuery JavaScript frameworks. This empowers users without compromising
their already developed product or allows them to decide on using the framework
which is best suited to their projects. Highcharts uses jQuery as the default
framework implementation, hence it only requires users to load the jQuery library
before Highcharts.

To use Highcharts under the MooTools environment, users simply do the following:

<script src="/ /ajax.googleapis.com/ajax/ l ibs/mootools/1.4.5/mootools-
yui-compressed. js"></script>
<script type="text / javascript"
 src="Highcharts-2.2.2/ js/adapters/mootools-adapter . js"></
script>
<script type="text / javascript"
 src="Highcharts-2.2.2/ js/highcharts. js"></script>

And to use Highcharts under Prototype, users need to do the following:

<script src="/ /ajax.googleapis.com/ajax/ l ibs/prototype/1.7.1.0/
prototype. js"></script>
<script type="text / javascript"
 src="Highcharts-2.2.2/ js/adapters/prototype-adapter . js"></
script>
<script type="text / javascript"
 src="Highcharts-2.2.2/ js/highcharts. js"></script>

Chapter 1

[����]

Presentation
Highcharts strikes the right balance of look and feel. The charts themselves are
visually pleasant and yet the style is simple. The default choices of color are
VRRWKLQJ�ZLWKRXW�D�VKDUS�FRQWUDVW�FRQÁLFWLQJ�HDFK�RWKHU��ZKLFK�LV�DLGHG�E\�WKH�
subtle shadow and white border effects. None of the text nor the colors of the axes
are in black or any dark color, which keeps the viewers' attention centered to the
colored data presentation.

$OO�WKH�DQLPDWLRQV��LQLWLDO��XSGDWH��WRROWLS��LQ�+LJKFKDUWV�DUH�ÀQHO\�WXQHG³VPRRWK�
with a gradual slowdown motion. For instance, the initial animation of the donut
chart, which is a multiseries pie chart, is the most impressive one. This is the area
where Highcharts is clearly better; the animations in other charts are too mechanical,
too much, and sometimes off-putting.

The round corners of tooltip and legends (both inner and outer) with a simple
ERUGHU�GR�QRW�ÀJKW�IRU�WKH�YLHZHUV
�DWWHQWLRQ�DQG�QLFHO\�EOHQG�LQVLGH�WKH�FKDUW��7KH�
following is a tooltip sample:

The following is a legend example with two series:

Web Charts

[20]

In a nutshell, every element in Highcharts does not compete with each other for
viewers' attention; they share the load equally and work together as a chart.

License
Highcharts has free noncommercial as well as commercial licenses. The free
OLFHQVH�IRU�SHUVRQDO�DQG�QRQSURÀW�SXUSRVHV�LV�&UHDWLYH�&RPPRQV�²�$WWULEXWLRQ�
1RQ&RPPHUFLDO������+LJKFKDUWV�RIIHUV�GLIIHUHQW�ÁDYRUV�RI�FRPPHUFLDO�OLFHQVHV�
for different purposes. They have a one-off single website license and, thankfully,
developer licenses. For web development products, a developer license is a better
model than charging in units of website basis or a very high priced OEM license
because of the following reasons:

�� It is easy for the software companies to work out the math in their
development plans

�� There is less worry regarding how many copies are being sold, so as to not
violate the license

As usual, the developer license does not automatically grant the use of Highcharts
LQGHÀQLWHO\��7KH�OLFHQVH�RQO\�SHUPLWV�WKH�XQOLPLWHG�XVH�RI�DOO�WKH�YHUVLRQV�UHOHDVHG�
within a year from the license purchase date. Thereafter, an update license is
required if developers decide to use a newer version and so on. Moreover, any
condition can be negotiated for the OEM license, and most commonly, the quote is
based on the number of developers on the project and the number of deployments.

Simple API model
Highcharts has a very simple API model. For creating a chart, the constructor
$3,�H[SHFWV�DQ�REMHFW�VSHFLÀHU�ZLWK�DOO�WKH�QHFHVVDU\�VHWWLQJV��$V�IRU�G\QDPLFDOO\�
updating an existing chart, Highcharts comes with a small set of APIs. The
FRQÀJXUDWLRQ�SURSHUWLHV�DUH�GHVFULEHG�LQ�GHWDLO�LQ�Chapter 2, +LJKFKDUWV�&RQÀJXUDWLRQV.
The API calls are discussed in Chapter 7, Highcharts APIs.

Documentations
Highcharts' online documentation is one of the areas that really outshines the others.
,W�LV�QRW�MXVW�D�VLPSOH�GRFXPHQWDWLRQ�SDJH�WR�GXPS�DOO�WKH�GHÀQLWLRQV�DQG�H[DPSOHV��
It's a documentation page built with thought. Here is why.

Chapter 1

[21]

The left-hand side of the documentation page is organized in an object structure as
how you would pass it to create a chart. You can expand and collapse the object's
attributes further like in a JavaScript console. This has helped the users to become
familiar with the product by using it naturally.

The well thought out part of the documentation is on the right-hand side with the
GHÀQLWLRQV�RI�WKH�DWWULEXWHV��(DFK�GHÀQLWLRQ�FRPHV�ZLWK�D�description and an online
demonstration for each setting linking to the jsFiddle website.

This instant jsFiddle demo invites users to explore different property values and
observes the effect on the chart. Hence, the whole documentation browsing process
EHFRPHV�YHU\�HIIHFWLYH�DQG�ÁXLG�

Openness (feature request with user voice)
One unusual way of how Highcharts decides new features for every major release
is via the users' voice (this is not unusual in open source project practices but it is
one of the areas where Highcharts is better than the others). Users can submit new
feature requests and then vote for them. The company then reviews the feature
requests with the highest votes and draws up a development plan for the new
features. The details of the plan are then published on the Highcharts website.

Web Charts

[22]

In addition, Highcharts is hosted on GitHub, an online public source control service,
which allows JavaScript developers to contribute and clone their own versions.

Highcharts – a quick tutorial
,Q�WKLV�VHFWLRQ��\RX�ZLOO�VHH�KRZ�WR�LPSOHPHQW�\RXU�ÀUVW�Highcharts graph. First,
download the latest version from the Highcharts website.

Directories structure
:KHQ�\RX�XQSDFN�WKH�GRZQORDGHG�=,3�ÀOH��\RX�VKRXOG�see the following directories'
structure under the Highcharts-2.x.x top-level directory:

The following is what each directory contains and is used for:

�� index.html : This is the demo HTML page, which is the same as the
demo page on the Highcharts website, so that you can still experiment
ZLWK�+LJKFKDUWV�RIÁLQH�

�� examples: This contains all the VRXUFH�ÀOHV�IRU�WKH�H[DPSOHV�
�� graphics��7KLV�FRQWDLQV�LPDJH�ÀOHV�XVHG�E\�WKH�examples.

Chapter 1

[23]

�� export ing-server: This is a directory for the server-side function to export
FKDUWV�LQWR�DQ�LPDJH�ÀOH�XVLQJ�%DWLN��ZKLFK�LV�D�-DYD�EDVHG�WRRONLW�IRU�
managing SVG content, and exporting the server is one of its usages.

�� js: This is the main directory with Highcharts code. (DFK�-DYD6FULSW�ÀOHQDPH�
KDV�WZR�VXIÀ[HV�� .src. js, which contains the source code with comments in
it, and . js��ZKLFK�LV�WKH�PLQLÀFDWLRQ�RI�-DYD6FULSW�VRXUFH�ÀOHV�

�� adapters: This has the adapter facility for using with MooTools or Prototype
PRGXOHV��,W�FRQWDLQV�WKH�IROORZLQJ�ÀOHV�

 q export ing. js for client-side exporting and printing functions
 q canvas-tools. js – we need to use a third-party tool, canvg, to

support Android 2.x, as the native browser has no SVG support but
can display the canvas

�� themes��7KLV�KDV�D�VHW�RI�-DYD6FULSW�ÀOHV�SUH�EXLOW�ZLWK�settings such as
background colors, font styles, axis layouts, and so on. Users can load
RQH�RI�WKHVH�ÀOHV�LQ�WKHLU�FKDUWV�IRU�GLIIHUHQW�VW\OHV�

All you need to do is move the top-level Highcharts-2.x.x/ js directory inside
your web server document's root directory.

To use Highcharts, you need to include Highcharts-2.x.x/ js/highcharts.
js�DQG�D�M4XHU\�OLEUDU\�LQ�\RXU�+70/�ÀOH��7KH�IROORZLQJ�LV�DQ�H[DPSOH�VKRZLQJ�
the percentage of web browsers' usage for a public website. The example uses the
PLQLPDO�FRQÀJXUDWLRQ�VHWWLQJV�IRU�JHWWLQJ�\RX�VWDUWHG�TXLFNO\��7KH�IROORZLQJ�LV�WKH�
top half of the example:

<!DOCTYPE HTML>
<html>
 <head>
 <meta ht tp-equiv="Content-Type"
 content="text /html ; charset=utf-8">
 <t i t le>Highcharts Fi rst Example</ t i t le>
 <script src="/ /ajax.googleapis.com/ajax/ l ibs/ jquery/1.7.1/ jquery.
min. js"></script>
 <script type="text / javascript"
 src="Highcharts-2.2.2/ js/highcharts. js"></script>

We use the Google public library service to load the jQuery library Version 1.7.1
before loading the Highcharts library.

Web Charts

[24]

The second half of the example is the main Highcharts code, as follows:

<script type="text / javascript">
 $(document) . ready(funct ion() {
 var chart = new Highcharts.Chart({
 chart : {
 renderTo: ' container ' ,
 type: ' spl ine '
 },
 t i t le: {
 text : 'Web browsers stat ist ics '
 },
 subt i t le: {
 text : 'From 2008 to present '
 },
 xAxis: {
 categories: [' Jan 2008 ' , 'Feb ' , ] ,
 t ickInterval : 3
 },
 yAxis: {
 t i t le: {
 text : 'Percentage % '
 },
 min: 0
 },
 plotOpt ions: {
 ser ies: {
 l ineWidth: 2
 }
 },
 ser ies: [{
 name: ' Internet Explorer ' ,
 data: [54.7, 54.7, 53.9, 54.8, 54.4, . . .]
 }, {
 name: 'Fi reFox ' ,
 data: [36.4, 36.5, 37.0, 39.1, 39.8, . . .]
 }, {
 / / Chrome star ted unt i l late 2008
 name: 'Chrome ' ,
 data: [nul l , nul l , nul l , nul l , nul l , nul l ,
 nul l , nul l , 3.1, 3.0, 3.1, 3.6, . . .]
 }, {
 name: ' Safar i ' ,
 data: [1.9, 2.0, 2.1, 2.2, 2.4, 2.6, . . .]
 }, {
 name: 'Opera ' ,

Chapter 1

[25]

 data: [1.4, 1.4, 1.4, 1.4, 1.5, 1.7, . . .]
 }]
 }) ;
 }) ;
</script>
 </head>
 <body>
 <div>
 <!-- Highcharts rendering takes place inside this DIV -->
 <div id="container"></div>
 </div>
</body>
</html>

7KH�VSOLQH�JUDSK�LV�FUHDWHG�YLD�DQ�REMHFW�VSHFLÀHU�WKDW�FRQWDLQV�DOO�WKH�SURSHUWLHV�DQG�
series data required. Once the chart object is created, the graph is displayed in the
EURZVHU��:LWKLQ�WKLV�REMHFW�VSHFLÀHU��WKHUH�DUH�PDMRU�components corresponding to
the structure of the chart.

var chart = new Highcharts.Chart({
 chart : {
 . . .
 },
 t i t le: ' . . . '
 . . .
}) ;

The renderTo option instructs Highcharts to display the graph onto the HTML
<div> element with ' container ' �DV�WKH�,'�YDOXH��ZKLFK�LV�GHÀQHG�LQ�WKH�+70/�
<body> section. The type option is set to the default presentation type as ' spl ine '
for any series data, as follows:

chart : {
 renderTo: ' container ' ,
 type: ' spl ine '
}

Next is to set t i t le and subt i t le, which appears at the center part at the top
of the chart:

t i t le: {
 text : 'Web browsers . . . '
},
subt i t le: {
 text : 'From 2008 to present '
},

Web Charts

[����]

The categories option in the xAxis property contains an array of x axis labels
for each data point. Since the graph has at least 50 data points, printing each x
axis label will make the text overlap each other. Rotating the labels still results in
the axis looking very packed. The best compromise is to print every third label,
(t ickIntervals: 3) which causes the labels to be nicely spaced out from each other.

For the sake of simplicity, we use 50 entries in xAxis.categories
to represent the time. However, we will see a more optimal and
logical way to display date time data in the next chapter.

xAxis: {
 categories: [' Jan 2008 ' , 'Feb ' , ] ,
 t ickInterval : 3
},

The options in yAxis are to assign the title of the y axis and set the minimum
possible value to zero, otherwise Highcharts will display a negative percentage
range along the y axis, which is unwanted for this dataset.

yAxis: {
 t i t le: {
 text : 'Percentage % '
 },
 min: 0
},

The plotOpt ions property is to control how each series is displayed according to
its type (line, pie, bar, and so on). The plotOpt ions.series option is the general
FRQÀJXUDWLRQ�DSSOLHG�WR�DOO�WKH�VHULHV�W\SH�LQVWHDG�RI�GHÀQLQJ�HDFK�VHWWLQJ�LQVLGH�WKH�
series array. In this example, the default l ineWidth for all the series is set to 2 pixels
wide, as follows:

 plotOpt ions: {
 ser ies: {
 l ineWidth: 2
 }
},

Chapter 1

[27]

The series SURSHUW\�LV�WKH�KHDUW�RI�WKH�ZKROH�FRQÀJXUDWLRQ�REMHFW��ZKLFK�GHÀQHV�DOO�
WKH�VHULHV�GDWD��,W�LV�DQ�DUUD\�RI�WKH�VHULHV�FRQÀJXUDWLRQ�REMHFWV��)RU�WKLV�H[DPSOH��WKH�
name option is the name of the series that appears in the chart legend and tooltip.
The data is an array of y axis values, which has the same length as the xAxis.
categories array to form (x,y) data points.

series: [{
 name: ' Internet Explorer ' ,
 data: [54.7, 54.7, 53.9, 54.8, 54.4, . . .]
}, {
 name: 'Fi reFox ' ,
 data: [36.4, 36.5, 37.0, 39.1, 39.8, . . .]
}, {

7KH�IROORZLQJ�VFUHHQVKRW�VKRZV�KRZ�WKH�ÀQDO�+LJKFKDUWV�VKRXOG�ORRN�RQ�D�
Safari browser:

Web Charts

[28]

The following screenshot shows how it should look on an Internet
Explorer 9 browser:

Chapter 1

[����]

The following screenshot shows how it should look on a Chrome browser:

Web Charts

[30]

The following screenshot shows how it should look on a Firefox browser:

Summary
Web charting has been around since the early days of HTML, emerging from server-
side technology to client-side. During this period, several solutions have been
adopted to work around the shortcomings of HTML. Now, with the new HTML5,
which is rich in features, web charting has come back to HTML and this time it is for
good, with the aid of unleashed JavaScript.

A number of JavaScript chart products were mentioned in this chapter..
Among these, Highcharts emerges with a distinct graphical style and smooth
user interactions.

,Q�WKH�QH[W�FKDSWHU��ZH�ZLOO�H[SORUH�WKH�+LJKFKDUWV�FRQÀJXUDWLRQ�REMHFW�LQ�JUHDWHU�
GHWDLO�ZLWK�SOHQW\�PRUH�H[DPSOHV��7KH�FRQÀJXUDWLRQ�REMHFW�LV�WKH�FRUH�SDUW�RI�WKH�
product that the structure serves as the common prototype for all the charts.

+LJKFKDUWV�&RQ¿JXUDWLRQV
$OO�+LJKFKDUWV�JUDSKV�VKDUH�WKH�VDPH�FRQÀJXUDWLRQ�VWUXFWXUH�DQG�LW�LV�FUXFLDO�IRU�XV�
to get familiar with the core components. However, it is not possible to go through
DOO�WKH�FRQÀJXUDWLRQV�LQ�WKLV�ERRN��,Q�WKLV�FKDSWHU��ZH�ZLOO�H[SORUH�WKH�SURSHUWLHV�WKDW�
are mostly used from a functional point of view and demonstrate them with ongoing
examples. We will learn the concept of how Highcharts manages layout, and
WKHQ�H[SORUH�KRZ�WR�FRQÀJXUH�D[HV��VSHFLI\�VLQJOH�VHULHV�DQG�PXOWLSOH�VHULHV�GDWD��
followed by formatting and styling tooltips in both JavaScript and HTML. Finally,
we will get to know how to polish our charts with various types of animations and to
apply color gradients. In this chapter we will cover the following:

�� Understanding Highcharts layouts
�� Framing the chart with axes
�� 5HYLVLWLQJ�WKH�VHULHV�FRQÀJXUDWLRQ
�� Styling the tooltips
�� Animating charts
�� Expanding colors with gradients

&RQ¿JXUDWLRQ�VWUXFWXUH
,Q�WKH�+LJKFKDUWV�FRQÀJXUDWLRQ�REMHFW��WKH�components at the top level represent
the skeleton structure of a chart. The following is a list of the major components
that are covered in this chapter. For the references of all the FRQÀJXUDWLRQV��JR�WR�
ht tp: / /api .highcharts.com/highcharts.

+LJKFKDUWV�&RQÀJXUDWLRQV

[32]

The following is a list of the major components:

�� chart ��&RQÀJXUDWLRQV�IRU�WKH�WRS�OHYHO�FKDUW�properties such as layouts,
dimensions, events, animations, and user interactions

�� series: Array of series objects �FRQVLVWLQJ�RI�GDWD�DQG�VSHFLÀF�RSWLRQV��IRU�
VLQJOH�DQG�PXOWLSOH�VHULHV��ZKHUH�WKH�VHULHV�GDWD�FDQ�EH�VSHFLÀHG�LQ�D�QXPEHU�
of ways

�� xAxis/yAxis��&RQÀJXUDWLRQV�IRU�DOO�WKH�D[LV�properties such as labels, styles,
intervals, plotlines, plot bands, and backgrounds

�� tool t ip: Layout and format style FRQÀJXUDWLRQV�IRU�WKH�VHULHV�GDWD�WRROWLSV
�� t i t le/subt i t le: Layout and style FRQÀJXUDWLRQV�IRU�WKH�FKDUW�WLWOH�

and subtitle
�� legend: Layout and format style FRQÀJXUDWLRQV�IRU�WKH�FKDUW�OHJHQG
�� plotOpt ions: Contains all the plotting options, such as display, animation,

DQG�XVHU�LQWHUDFWLRQV�IRU�FRPPRQ�VHULHV�DQG�VSHFLÀF�VHULHV�W\SHV
�� export ing��&RQÀJXUDWLRQV�FRQWURO�WKH�OD\RXW�DQG�WKH�function of print and

export features

Understanding Highcharts layouts
Before we start to learn how Highcharts layouts work, it is imperative that we
XQGHUVWDQG�VRPH�EDVLF�FRQFHSWV�ÀUVW��7R�GR�WKDW��OHW�XV�ÀUVW�UHFDOO�WKH�FKDUW�H[DPSOH�
used in Chapter 1, Web Charts, and set a couple of borders to be visible. First, set a
border around the plot area; to do that we can set the options of plotBorderWidth
and plotBorderColor in the chart section, as follows:

 chart : {
 renderTo: ' container ' ,
 type: ' spl ine ' ,
 plotBorderWidth: 1,
 plotBorderColor : ' #3F4044 '
 },

Chapter 2

[33]

The second border is set around the Highcharts container. Next, we extend the
preceding chart section with additional settings:

 chart : {
 renderTo: ' container ' ,

 borderColor : ' #a1a1a1 ' ,
 borderWidth: 2,
 borderRadius: 3
 },

Basically, this sets the container border color with the width of 2 pixels and the
corner radius to 3 pixels.

As we can see, there is a border around the container, and this is the boundary that
the Highcharts display cannot exceed:

+LJKFKDUWV�&RQÀJXUDWLRQV

[34]

By default, Highcharts displays have three different areas—spacing area, labeling
area, and plot area. The plot area is the area inside the inner rectangle that contains
all the plot graphics. The labeling area is the area where labels such as title, subtitle,
axis title, legend, and credits go around the plot area, so that it is between the edge
of the plot area and the inner edge of the spacing area. The spacing area is the area
between the container border and the outer edge of the labeling area. The following
screenshot shows three different kinds of areas. A gray dotted line is inserted to
illustrate the boundary between the spacing and labeling areas.

Each chart label positioning can be operated in one of the following two layouts:

�� Automatic layout: Highcharts automatically adjusts the plot area size based
on the labels' positions in the labeling area, that is, the plot area does not
overlap with the label element at all. Automatic layout is the simplest way
WR�FRQÀJXUH��EXW�KDV�OHVV�FRQWURO��WKLV�LV�WKH�GHIDXOW�ZD\�RI�SRVLWLRQLQJ�WKH�
chart elements.

�� Fixed layout: There is no concept of labeling area. The chart label is
VSHFLÀHG�LQ�D�À[HG�ORFDWLRQ�VXFK�WKDW�LW�KDV�D�ÁRDWLQJ�HIIHFW�RQ�WKH�SORW�
area. In other words, the plot area side does not automatically adjust itself
to the adjacent label position. This gives users full control of exactly how to
display the chart.

Chapter 2

[35]

The spacing area controls the offset of the Highcharts display on each side. As long
DV�WKH�FKDUW�PDUJLQV�DUH�QRW�GHÀQHG��LQFUHDVLQJ�RU�GHFUHDVLQJ�WKH�VSDFLQJ�DUHD�KDV�
WKH�JOREDO�HIIHFW�RQ�WKH�SORW�DUHD�PHDVXUHPHQW�LQ�ERWK�DXWRPDWLF�DQG�À[HG�OD\RXWV�

Chart margins and spacings
In this section, we will see how chart margins and spacing settings have an effect
RQ�WKH�RYHUDOO�OD\RXW��&KDUW�PDUJLQV�FDQ�EH�FRQÀJXUHG�ZLWK�WKH�SURSHUWLHV�margin,
marginTop, marginLeft , marginRight , and marginBot tom, and they are not enabled
by default. Setting chart margins has a global effect on the plot area, so that none of
WKH�ODEHO�SRVLWLRQV�QRU�WKH�FKDUW�VSDFLQJ�FRQÀJXUDWLRQV�FDQ�DIIHFW�WKH�SORW�DUHD�VL]H��
+HQFH��DOO�WKH�FKDUW�HOHPHQWV�DUH�LQ�D�À[HG�OD\RXW�PRGH�ZLWK�UHVSHFW�WR�WKH�SORW�DUHD��
The margin option is an array of four margin values covered for each direction, the
same as CSS starting from north and going clockwise. Also, the margin option has a
lower precedence than any of the directional margin options, regardless of the order
in the chart section.

6SDFLQJ�FRQÀJXUDWLRQV�DUH�HQDEOHG�E\�GHIDXOW�ZLWK�D�À[HG�YDOXH�RQ�HDFK�VLGH��
7KHVH�FDQ�EH�FRQÀJXUHG�LQ�WKH�chart section with the property names spacingTop,
spacingLeft , spacingBot tom, and spacingRight .

In this example, we are going to increase or decrease the margin or spacing
property on each side of the chart and observe the effect. The following are the
chart settings:

 chart : {
 renderTo: ' container ' ,
 type: . . .
 marginTop: 10,
 marginRight : 0,
 spacingLeft : 30,
 spacingBot tom: 0
 },

+LJKFKDUWV�&RQÀJXUDWLRQV

[����]

The following screenshot shows what the chart looks like:

The marginTop property À[DWHV�WKH�SORW�DUHD
V�WRS�ERUGHU�10 pixels away from the
FRQWDLQHU�ERUGHU��,W�DOVR�FKDQJHV�WKH�WRS�ERUGHU�LQWR�À[HG�OD\RXW�WR�DQ\�ODEHO�HOHPHQWV��
KHQFH�WKH�FKDUW�WLWOH�DQG�VXEWLWOH�ÁRDW�RQ�WRS�RI�WKH�SORW�DUHD��7KH�spacingLeft
property increases the spacing area on the left-hand side, hence it pushes the y-axis
title further in. As it is in the automatic layout (without declaring marginLeft), it
also pushes the plot area's west border in. Setting marginRight to 0 will override all
WKH�GHIDXOW�VSDFLQJ�RQ�WKH�FKDUW
V�ULJKW�KDQG�VLGH�DQG�WXUQ�LW�LQWR�À[HG�OD\RXW�PRGH��
Finally, setting spacingBot tom to 0 makes the legend touch the lower bar of the
container. Hence, it also stretches the plot area downwards. This is because the bottom
edge is still in automatic layout even though spacingBot tom is set to 0.

Chart label properties
Chart labels such as xAxis. t i t le, yAxis. t i t le, legend, t i t le, subt i t le, and
credi ts share the common property names, which are as follows:

�� al ign: This is for horizontal alignment for the label; possible keywords are
' lef t ' , ' center ' , and ' r ight ' . As for the axis title, it is ' low ' , 'middle ' ,
and ' high ' .

Chapter 2

[37]

�� f loat ing��7KLV�LV�IRU�WKH�ODEHO�SRVLWLRQ�KDYLQJ�D�ÁRDWLQJ�HIIHFW�LQ�WKH�SORW�
area. Setting this to t rue will cause the label position to have no effect on the
adjacent plot area's boundary.

�� margin: This is the margin setting between the label and the side of the plot
area adjacent to it. Only certain label types have this setting.

�� vert icalAl ign: This is for vertical alignment for the label; keywords are
' top ' , 'middle ' , and ' bot tom ' .

�� x: This is for horizontal positioning in relation to alignment.
�� y: This is for vertical positioning in relation to alignment.

As for the labels' x and y positioning, they are not used for absolute positioning
ZLWKLQ�WKH�FKDUW��7KH\�DUH�GHVLJQHG�IRU�ÀQH�DGMXVWPHQW�ZLWK�WKH�ODEHO�DOLJQPHQW��7KH�
following diagram shows the coordinate directions, where the center represents the
label location:

We can experiment with these properties with a simple example of the al ign and
y position settings, by placing both title and subtitle next to each other. The title is
shifted to the left with al ign set to ' lef t ' , whereas the subtitle alignment is set
to ' r ight ' . In order to make both titles appear on the same line, we change the
subtitle's y position to 15, which is the same as the title's default y value:

 t i t le: {
 text : 'Web browsers . . . ' ,
 al ign: ' lef t '
 },
 subt i t le: {
 text : 'From 2008 to present ' ,
 al ign: ' r ight ' ,
 y: 15
 },

+LJKFKDUWV�&RQÀJXUDWLRQV

[38]

The following is a screenshot showing both titles aligning on the same line:

In the following subsections, we will experiment with how the changes in alignment
for each label element will affect the layout behaviors towards the plot area.

Title and subtitle alignments
Title and subtitle have the same layout properties, and the only difference is that the
default values and title have the margin setting. Specifying vert icalAl ign to any
YDOXH�FDQ�FKDQJH�IURP�WKH�GHIDXOW�DXWRPDWLF�OD\RXW�WR�WKH�À[HG�OD\RXW��LQWHUQDOO\�
this switches f loat ing to t rue). However, manually setting the subtitle's f loat ing
property to false does not switch it back to automatic layout. The following is an
example of having t i t le in automatic layout and subt i t le�LQ�À[HG�OD\RXW�

 t i t le: {
 text : 'Web browsers stat ist ics '
 },
 subt i t le: {
 text : 'From 2008 to present ' ,
 ver t icalAl ign: ' top ' ,
 y: 60 },

The vert icalAl ign property for the subtitle is set to ' top ' , which switches the
OD\RXW�LQWR�WKH�À[HG�OD\RXW�DQG�WKH�y offset is increased to 60. The y offset pushes
the subtitle's position further down. Due to the fact that the plot area is not in an
automatic layout relationship to the subtitle anymore, the top border of the plot
area goes above the subtitle. However, the plot area is still in the automatic layout
towards the title, hence the title is still above the plot area:

Chapter 2

[����]

This is currently a defect reported in Highcharts. The
assignment in vert icalAl ign forces both title and subtitle
LQWR�À[HG�OD\RXW��WKDW�LV��f loat ing is t rue���<RX�FDQ�ÀQG�WKH�
bug report at ht tp: / /gi thub.com/highsl ide-software/
highcharts.com/ issues/962.

Legend alignment
Legends show different behaviors for the vert icalAl ign and al ign properties.
Apart from setting the alignment to ' center ' , all other settings in vert icalAl ign
and al ign remain in automatic positioning. The following is an example of the
legend located on the right-hand side of the chart. The vert icalAl ign property is
switched to the middle of the chart, where the horizontal al ign is set to ' r ight ' :

 legend: {
 al ign: ' r ight ' ,
 ver t icalAl ign: 'middle ' ,
 layout : ' ver t ical ' ,
 },

The layout property is assigned to ' ver t ical ' so that it causes the items inside
the legend box to be displayed in a vertical manner. As we can see, the plot area is
automatically resized for the legend box:

Axis title alignment
Axis titles do not use vert icalAl ign. Instead, they use the al ign setting, which is
either ' low ' , 'middle ' , or ' high ' . The title's margin value is the distance between
the axis title and the axis line. The following is an example of showing the y-axis title
rotated horizontally instead of vertically (which it does by default), and displayed on
the top of the axis line instead of next to it. Moreover, we use the y�SURSHUW\�WR�ÀQHO\�
tune the title location:

 yAxis: {
 t i t le: {
 text : 'Percentage % ' ,
 rotat ion: 0,

+LJKFKDUWV�&RQÀJXUDWLRQV

[40]

 y: -15,
 margin: -70,
 al ign: ' high '
 },
 min: 0
 },

The following is a screenshot of the upper-left corner of the chart showing that the
title is aligned horizontally at the top of the y axis. Alternatively, we can use the
offset option instead of margin to achieve the same result.

Credits alignment
Credits is a bit different than other label elements. It only supports the al ign,
vert icalAl ign, x, and y properties in the credi ts.posi t ion property (shorthand
for credi ts: { posi t ion: … }), and is also not affected by any spacing settings.
Suppose we have a graph without a legend and we have to move the credits to the
lower-left area of the chart; the following code snippet shows how to do it:

 legend: {
 enabled: false
 },
 credi ts: {
 posi t ion: {
 al ign: ' lef t '
 },
 text : ' Joe Kuan ' ,
 href : ' ht tp: / / joekuan.wordpress.com '
 },

Chapter 2

[41]

However, the credits text is off the edge of the chart, as shown in the
following screenshot:

Even if we move the credi ts label to the right with x positioning, the label is still a
bit too close to the x-axis interval label. We can introduce extra spacingBot tom to
put a gap between both labels, as follows:

 chart : {
 spacingBot tom: 30,

 },
 credi ts: {
 posi t ion: {
 al ign: ' lef t ' ,
 x: 20,
 y: -7
 },

7KH�IROORZLQJ�LV�D�VFUHHQVKRW�RI�WKH�FUHGLWV�ZLWK�WKH�ÀQDO�DGMXVWPHQWV�

Experimenting with the automatic layout
In this section, we will examine the automatic layout feature in more detail. For the
sake of simplifying the example, we will start only with the chart title and without
any chart spacing settings:

 chart : {
 renderTo: ' container ' ,
 / / border and plotBorder set t ings

 },
 t i t le: {
 text : 'Web browsers stat ist ics,
 },

+LJKFKDUWV�&RQÀJXUDWLRQV

[42]

From the preceding example, the chart title should appear as expected between the
container and the plot area's borders:

The space between the title and the top border of the container has the default setting
spacingTop for the spacing area (default value of 10 pixels high). The gap between
the title and the top border of the plot area is the default setting for t i t le.margin,
which is 15 pixels high.

By setting spacingTop in the chart section to 0, the chart title moves up next to
the container top border. Hence the size of the plot area is automatically expanded
upwards, as follows:

Then we set t i t le.margin to 0; the plot area border moves further up, hence the
height of the plot area increases further, as follows:

As you may notice, there is still a gap of a few pixels between the top border and
the chart title. This is actually due to the default value of the title's y position setting,
which is 15 pixels, large enough for the default title font size.

7KH�IROORZLQJ�LV�WKH�FKDUW�FRQÀJXUDWLRQ�IRU�VHWWLQJ�DOO�WKH�spaces between the
container and the plot area to 0:

chart : {
 renderTo: ' container ' ,
 / / border and plotBorder set t ings

 spacingTop: 0
},
t i t le: {
 text : 'Web browsers stat ist ics ' ,
 margin: 0,
 y: 0
}

Chapter 2

[43]

If we set t i t le.y to 0, all the gaps between the top edge of the plot area and the top
FRQWDLQHU�HGJH�FORVH�XS��7KH�IROORZLQJ�LV�WKH�ÀQDO�VFUHHQVKRW�RI�WKH�XSSHU�OHIW�FRUQHU�
of the chart, to show the effect. The chart title is not visible anymore as it has been
shifted above the container:

,QWHUHVWLQJO\��LI�ZH�ZRUN�EDFNZDUGV�WR�WKH�ÀUVW�H[DPSOH��WKH�GHIDXOW�GLVWDQFH�
between the top of the plot area and the top of the container is calculated, as follows:

spacingTop + t i t le.margin + t i t le.y = 10 + 15 + 15 = 40

Therefore, changing any of these three variables will automatically adjust the plot
area from the top container bar. Each of these offset variables actually has its own
purpose in the automatic layout. Spacing is for the gap between the container and
the chart content. So, if we want to display a chart nicely spaced with other elements
on a web page, spacing elements VKRXOG�EH�XVHG��(TXDOO\��LI�ZH�ZDQW�WR�XVH�D�VSHFLÀF�
font size for the label elements, we should consider adjusting the y offset. Hence, the
labels are still maintained at a distance and do not interfere with other components
in the chart.

([SHULPHQWLQJ�ZLWK�WKH�¿[HG�OD\RXW
In the preceding section we have learned how the plot area dynamically adjusted
itself. In this section, we will see how we can manually position the chart labels. First,
we will start with the example code from the beginning of the ([SHULPHQWLQJ�ZLWK�WKH�
DXWRPDWLF�OD\RXW section and set the chart title's vert icalAl ign to ' bot tom ' ,
as follows:

chart : {
 renderTo: ' container ' ,
 / / border and plotBorder set t ings
},
t i t le: {
 text : 'Web browsers stat ist ics ' ,
 ver t icalAl ign: ' bot tom '
},

+LJKFKDUWV�&RQÀJXUDWLRQV

[44]

The chart title is moved to the bottom of the chart, next to the lower border of the
FRQWDLQHU��1RWLFH�WKDW�WKLV�VHWWLQJ�KDV�FKDQJHG�WKH�WLWOH�LQWR�ÁRDWLQJ�PRGH��DQG�PRUH�
importantly the legend still remains in the default automatic layout to the plot area:

%HZDUH�WKDW�ZH�KDYHQ
W�VSHFLÀHG�spacingBot tom, which has a default value of 15
pixels height applied to the chart. This means that there should be a gap between
the title and the container bottom border, but none is shown. This is because the
t i t le.y position has a default value of 15 pixels in relation to spacing. According
to the diagram in the Chart label properties section, this positive y value pushes the
title towards the bottom border's direction, which compensates for the space created
by spacingBot tom.

Let's make a bigger change on the y offset position this time to show that
vert icalAl ign�LV�ÁRDWLQJ�RQ�WRS�RI�WKH�SORW�DUHD�

 t i t le: {
 text : 'Web browsers stat ist ics ' ,
 ver t icalAl ign: ' bot tom ' ,
 y: -90
 },

The negative y value moves the title up, as shown in the following screenshot:

Now the title is overlapping the plot area. To demonstrate that the legend is still in
automatic layout towards the plot area, here we change the legend's y position and
the margin settings, which is the distance from the axis label:

 legend: {
 margin: 70,
 y: -10
 },

Chapter 2

[45]

This has pushed up the bottom side of the plot area. However, the chart title still
UHPDLQV�LQ�WKH�À[HG�OD\RXW�DQG�LWV�SRVLWLRQ�ZLWKLQ�WKH�FKDUW�KDVQ
W�EHHQ�changed at
all after applying the new legend setting, as shown in the following screenshot:

By now we should have a better understanding of how to position label elements,
and their layout policy relating to the plot area.

Framing the chart with axes
In this section, we are going to look into +LJKFKDUWV�D[LV�FRQÀJXUDWLRQ�LQ�WHUPV�
of their functional area. Throughout this section, we will start off with a plain line
graph and gradually apply more options to the chart to demonstrate the effects.

Accessing the axis data type
There are two ways to specify data for a chart—categories and series data. For
GLVSOD\LQJ�LQWHUYDOV�ZLWK�VSHFLÀF�QDPHV��ZH�VKRXOG�XVH�WKH�FDWHJRULHV�ÀHOG�WKDW�
expects an array of strings. Each entry in the categories array is then associated with
the series data array. Alternatively, the axis interval values are embedded inside the
series data array. Then Highcharts extracts the series data for both axes, interprets
the data type, and formats and labels the values appropriately.

The following is a straightforward example showing the usage of categories:

 chart : {
 renderTo: ' container ' ,
 height : 250,
 spacingRight : 20
 },
 t i t le: {
 text : 'Market Data: Nasdaq 100 '
 },
 subt i t le: {

+LJKFKDUWV�&RQÀJXUDWLRQV

[����]

 text : 'May 11, 2012 '
 },
 xAxis: {
 categories: [' 9:30 am ' , ' 10:00 am ' , ' 10:30 am ' ,
 ' 11:00 am ' , ' 11:30 am ' , ' 12:00 pm ' ,
 ' 12:30 pm ' , ' 1:00 pm ' , ' 1:30 pm ' ,
 ' 2:00 pm ' , ' 2:30 pm ' , ' 3:00 pm ' ,
 ' 3:30 pm ' , ' 4:00 pm '] ,
 labels: {
 step: 3
 }
 },
 yAxis: {
 t i t le: {
 text : nul l
 }
 },
 legend: {
 enabled: false
 },
 credi ts: {
 enabled: false
 },
 ser ies: [{
 name: 'Nasdaq ' ,
 data: [2606.01, 2622.08, 2636.03, 2637.78, 2639.15,
 2637.09, 2633.38, 2632.23, 2632.33, 2632.59,
 2630.34, 2626.89, 2624.59, 2615.98]
 }]

The preceding code snippet produces a graph that looks like the following screenshot:

Chapter 2

[47]

7KH�ÀUVW�QDPH��9:30 am��LQ�WKH�FDWHJRULHV�ÀHOG�FRUUHVSRQGV�WR�WKH�ÀUVW�YDOXH�����������
in the series data array, and so on.

Alternatively, we can specify the time values inside the series data and use the type
property of the x axis to format the time. The type property supports ' l inear '
(default), ' logari thmic ' , or ' datet ime ' . The ' datet ime ' setting automatically
interprets the time in the series data into human-readable form. Moreover, we can
use the dateTimeLabelFormats�SURSHUW\�WR�SUHGHÀQH�WKH�FXVWRP�IRUPDW�IRU�WKH�WLPH�
unit. The option can also accept multiple time unit formats; this is for when we don't
know in advance how long the time span is in the series data, that is, each unit in the
resulting graph can be in per hour, per day, and so on. The following example shows
KRZ�WKH�JUDSK�LV�VSHFLÀHG�ZLWK�SUHGHÀQHG�KRXUO\�DQG�PLQXWH�IRUPDWV��7KH�V\QWD[�RI�
the format string is based on the PHP strf t ime function:

 xAxis: {
 type: ' datet ime ' ,
 / / Format 24 hour t ime to AM/PM
 dateTimeLabelFormats: {

 hour: '%I :%M %P ' ,
 minute: '%I %M '
 }
 },
 ser ies: [{
 name: 'Nasdaq ' ,
 data: [[Date.UTC(2012, 4, 11, 9, 30) , 2606.01] ,
 [Date.UTC(2012, 4, 11, 10) , 2622.08] ,
 [Date.UTC(2012, 4, 11, 10, 30) , 2636.03] ,

]
 }]

Note that the x axis is in the 12-hour time format:

+LJKFKDUWV�&RQÀJXUDWLRQV

[48]

,QVWHDG��ZH�FDQ�GHÀQH�WKH�IRUPDW�KDQGOHU�IRU�WKH�xAxis. labels. format ter
property to achieve a similar effect. Highcharts provides a utility routine,
Highcharts.dateFormat , which converts the timestamp in milliseconds to a
UHDGDEOH�IRUPDW��,Q�WKH�IROORZLQJ�FRGH�VQLSSHW��ZH�GHÀQH�WKH�format ter function
using dateFormat and this.value. The keyword this is the axis's interval object,
whereas this.value is the UTC time value for the instance of the interval.

 xAxis: {
 type: ' datet ime ' ,
 labels: {
 format ter : funct ion() {
 return Highcharts.dateFormat('%I :%M %P ' , this.value);
 }
 }
 },

6LQFH�WKH�WLPH�YDOXHV�RI�RXU�GDWD�SRLQWV�DUH�LQ�À[HG�LQWHUYDOV��WKH\�FDQ�DOVR�EH�
DUUDQJHG�LQ�D�FXW�GRZQ�YHUVLRQ��$OO�LW�QHHGV�LV�WR�GHÀQH�WKH�VWDUWLQJ�SRLQW�RI�time,
pointStart , and the regular interval between them, pointInterval , in milliseconds.

series: [{
 name: 'Nasdaq ' ,
 pointStar t : Date.UTC(2012, 4, 11, 9, 30) ,
 pointInterval : 30 * 60 * 1000,
 data: [2606.01, 2622.08, 2636.03, 2637.78,
 2639.15, 2637.09, 2633.38, 2632.23,
 2632.33, 2632.59, 2630.34, 2626.89,
 2624.59, 2615.98]
}]

Adjusting intervals and background
We have learned how to use the axis's categories and series data array in the last
section. In this section, we will see how to format interval lines and the background
style to produce a graph with more clarity.

So, let's continue from the previous example. First, let's create some interval lines
along the y axis. In the chart, the interval is automatically set to 20. However,
it would be clearer to double the number of interval lines. To do that, simply
assign the t ickInterval value to 10. Then, we use minorTickInterval to
put another line in between the intervals to indicate a semi-interval. In order to
distinguish between interval and semi-interval lines, we set the semi-interval lines,
minorGr idLineDashStyle, to dashed and dotted style.

Chapter 2

[����]

There are nearly a dozen line style settings available in
Highcharts, from ' Sol id ' to 'LongDashDotDot ' .
Readers can refer to the online manual for possible values.

7KH�IROORZLQJ�LV�WKH�ÀUVW�VWHS�IRU�FUHDWLQJ�WKH�QHZ�VHWWLQJV�

 yAxis: {
 t i t le: {
 text : nul l
 },
 t ickInterval : 10,
 minorTickInterval : 5,
 minorGr idLineColor : ' #ADADAD ' ,
 minorGr idLineDashStyle: ' dashdot '
 }

The interval lines should look like the following screenshot:

To make the graph even more presentable, we add some striping effect with
shading—al ternateGr idColor. Then we change the interval line color,
gridLineColor, to a similar range with the stripes. The following code snippet is
added into the yAxis�FRQÀJXUDWLRQ�

 gr idLineColor : ' #8AB8E6 ' ,
 al ternateGr idColor : {
 l inearGradient : {
 x1: 0, y1: 1,

+LJKFKDUWV�&RQÀJXUDWLRQV

[50]

 x2: 1, y2: 1
 },
 stops: [[0, ' #FAFCFF '] ,
 [0.5, ' #F5FAFF '] ,
 [0.8, ' #E0F0FF '] ,
 [1, ' #D6EBFF ']]
 }

We will discuss the color gradient later in this chapter. The following is the graph
with the new shading background:

The next step is to apply a more professional look onto the y-axis line. We are
going to draw a line on the y axis with the l ineWidth property and add some
measurement marks along the interval lines with the following code snippet:

 l ineWidth: 2,
 l ineColor : ' #92A8CD ' ,
 t ickWidth: 3,
 t ickLength: 6,
 t ickColor : ' #92A8CD ' ,
 minorTickLength: 3,
 minorTickWidth: 1,
 minorTickColor : ' #D8D8D8 '

Chapter 2

[51]

t ickWidth and t ickLength add the effect of little marks at the start of each interval
line. We apply the same color on both the interval mark and the axis line. Then add
ticks—minorTickLength and minorTickWidth—into the semi-interval lines with a
smaller size. This gives a nice measurement mark effect along the axis, as shown in
the following screenshot:

Now we apply a similar polish to the xAxis FRQÀJXUDWLRQ��DV�IROORZV�

 xAxis: {
 type: ' datet ime ' ,
 labels: {
 format ter : funct ion() {
 return Highcharts.dateFormat('%I :%M %P ' , this.
value);
 },
 },
 gr idLineDashStyle: ' dot ' ,
 gr idLineWidth: 1,
 t ickInterval : 60 * 60 * 1000,
 l ineWidth: 2,
 l ineColor : ' #92A8CD ' ,
 t ickWidth: 3,
 t ickLength: 6,
 t ickColor : ' #92A8CD ' ,
 },

+LJKFKDUWV�&RQÀJXUDWLRQV

[52]

We set the x-axis interval lines into the hourly format and switch the line style to a
dotted line. Then we apply the same color, thickness, and interval ticks as in the y
axis. The following is the screenshot:

However, there are some defects along the x-axis line. To begin with, the meeting
point between the x-axis and y-axis lines does not align properly. Secondly, the
LQWHUYDO�ODEHOV�DW�WKH�[�D[LV�DUH�WRXFKLQJ�WKH�LQWHUYDO�WLFNV��)LQDOO\��SDUW�RI�WKH�ÀUVW�
data point is covered by the y-axis line. The following is an enlarged screenshot
showing the issues:

There are two ways to resolve the axis lines' alignment problem, as follows:

�� Shift the plot area 1 pixel away from the x axis. This can be achieved by
setting the offset property of xAxis to 1.

�� Increase the x-axis line width to 3 pixels, which is the same width as the
y-axis tick interval.

As for the x-axis label, we can simply solve the problem by introducing the y offset
value inside the labels setting.

Chapter 2

[53]

)LQDOO\��WR�DYRLG�WKH�ÀUVW�GDWD�SRLQW�WRXFKLQJ�WKH�\�D[LV�OLQH��ZH�FDQ�LPSRVH�
minPadding on the x axis. What this does is to add padding space at the minimum
YDOXH�RI�WKH�D[LV��WKDW�LV��WKH�ÀUVW�SRLQW��7KH�minPadding value is based on the ratio
of the graph width. In this case, setting the property to 0.02 is equivalent to shifting
along the x axis 5 pixels to the right (250px * 0.02). The following are the additional
settings to smooth the chart:

 xAxis: {

 labels: {
 format ter : . . . ,
 y: 17
 },

 minPadding: 0.02,
 offset : 1
 }

The following screenshot shows that the issues have been addressed:

$V�ZH�FDQ�VHH��+LJKFKDUWV�KDV�D�FRPSUHKHQVLYH�VHW�RI�FRQÀJXUDEOH�YDULDEOHV�ZLWK�
VXFK�ÁH[LELOLW\�

Using plot lines and plot bands
In this section, we are going to see how we can use Highcharts to place any lines or
bands along the axis. We will continue with the example from the previous section.
Let's draw a couple of lines to indicate the day's highest and lowest index points on
the y axis. The plotLines�ÀHOG�DFFHSWV�DQ�DUUD\�RI�REMHFW�FRQÀJXUDWLRQV�IRU�HDFK�
plot line. There are no width and color default values for plotLines, so we need to
specify them explicitly in order to see the line. The following is the code snippet for
the plot lines:

 yAxis: {
 . . . ,
 plotLines: [{
 value: 2606.01,
 width: 2,
 color : ' #821740 ' ,

+LJKFKDUWV�&RQÀJXUDWLRQV

[54]

 label : {
 text : 'Lowest : 2606.01 ' ,
 style: {
 color : ' #898989 '
 }
 }
 }, {
 value: 2639.15,
 width: 2,
 color : ' #4A9338 ' ,
 label : {
 text : 'Highest : 2639.15 ' ,
 style: {
 color : ' #898989 '
 }
 }
 }]
 }

The following screenshot shows what it should look like:

We can improve the look of the chart slightly. Firstly, the text label for the top plot
line should be next to the highest point, and secondly the label for the bottom line
should not be remotely covered by the series and interval lines, as follows:

Chapter 2

[55]

To resolve these issues, we can assign the plot line's zIndex to 1, which brings the
text label above the interval lines. We also set the x position of the label to shift the
texts next to the point. The following are the new changes:

 plotLines: [{
 . . . ,
 label : {
 . . . ,
 x: 25
 },
 zIndex: 1
 }, {
 . . . ,
 label : {
 . . . ,
 x: 130
 },
 zIndex: 1
 }]

The following graph shows the label has been moved away from the plot line and
over the interval line:

Now we are going to change the preceding example with a plot band area that
shows the index change between the market opening and closing. The plot band
FRQÀJXUDWLRQ�LV�YHU\�VLPLODU�WR�SORW�OLQHV��H[FHSW�WKDW�LW�XVHV�WKH�to and from
properties and also the color property accepts gradient settings or color code. We
create a plot band with a triangle text symbol and values to signify a positive close.
Instead of using the x and y�SURSHUWLHV�WR�ÀQH�WXQH�WKH�ODEHO�SRVLWLRQ��ZH�XVH�WKH�
al ign option to adjust the text to the center of the plot area:

 plotBands: [{
 from: 2606.01,
 to: 2615.98,
 label : {
 text : ' � 9.97 (0.38%) ' ,
 al ign: ' center ' ,
 style: {
 color : ' #007A3D '
 }
 },

+LJKFKDUWV�&RQÀJXUDWLRQV

[����]

 zIndex: 1,
 color : {
 l inearGradient : {
 x1: 0, y1: 1,
 x2: 1, y2: 1
 },
 stops: [[0, ' #EBFAEB '] ,
 [0.5, ' #C2F0C2 '] ,
 [0.8, ' #ADEBAD '] ,
 [1, ' #99E699 ']
]
 }
 }]

The triangle is an alt-code character; hold down the left Alt key and
enter 30 in the number keypad. See ht tp: / /www .al t -codes.
net for more details.

This produces a chart with a green plot band highlighting a positive close in the
market, as shown in the following screenshot:

Extending to multiple axes
3UHYLRXVO\��ZH�KDYH�UXQ�WKURXJK�PRVW�RI�WKH�D[LV�FRQÀJXUDWLRQV��+HUH��ZH�
explore how we can use multiple axes, which is just an array of objects containing
D[LV�FRQÀJXUDWLRQV�

Chapter 2

[57]

Continuing from the previous stock market example, suppose now we want to include
another market index, Dow Jones, along with Nasdaq. However, both indices are
different in nature, hence their value ranges are vastly different. First let us examine
the outcome by displaying both indices with the common y axis. We change the title,
UHPRYH�WKH�À[HG�LQWHUYDO�VHWWLQJ�RQ�WKH�\�D[LV��DQG�LQFOXGH�DQRWKHU�VHULHV�GDWD�

 chart : . . . ,
 t i t le: {
 text : 'Market Data: Nasdaq & Dow Jones '
 },
 subt i t le: . . . ,
 xAxis: . . . ,
 credi ts: . . . ,
 yAxis: {
 t i t le: {
 text : nul l
 },
 minorGr idLineColor : ' #D8D8D8 ' ,
 minorGr idLineDashStyle: ' dashdot ' ,
 gr idLineColor : ' #8AB8E6 ' ,
 al ternateGr idColor : {
 l inearGradient : {
 x1: 0, y1: 1,
 x2: 1, y2: 1
 },
 stops: [[0, ' #FAFCFF '] ,
 [0.5, ' #F5FAFF '] ,
 [0.8, ' #E0F0FF '] ,
 [1, ' #D6EBFF ']]
 },
 l ineWidth: 2,
 l ineColor : ' #92A8CD ' ,
 t ickWidth: 3,
 t ickLength: 6,
 t ickColor : ' #92A8CD ' ,
 minorTickLength: 3,
 minorTickWidth: 1,
 minorTickColor : ' #D8D8D8 ' ,
 },
 ser ies: [{
 name: 'Nasdaq ' ,
 data: [[Date.UTC(2012, 4, 11, 9, 30) , 2606.01] ,
 [Date.UTC(2012, 4, 11, 10) , 2622.08] ,
 [Date.UTC(2012, 4, 11, 10, 30) , 2636.03] ,
 . . .
]
 }, {

+LJKFKDUWV�&RQÀJXUDWLRQV

[58]

 name: 'Dow Jones ' ,
 data: [[Date.UTC(2012, 4, 11, 9, 30) , 12598.32] ,
 [Date.UTC(2012, 4, 11, 10) , 12538.61] ,
 [Date.UTC(2012, 4, 11, 10, 30) , 12549.89] ,
 . . .
]
 }]

The following is the chart showing both market indices:

As expected, the index changes during the day have been normalized by the vast
differences. Both lines look roughly straight, which falsely implies that the indices
have hardly changed.

Let us now explore putting both indices onto separate y axes. We should remove any
background decoration on the y axis, because we now have a different range of data
shares on the same background.

The following is the new setup for yAxis:

 yAxis: [{
 t i t le: {
 text : 'Nasdaq '
 },
 }, {
 t i t le: {
 text : 'Dow Jones '
 },
 opposi te: t rue
 }] ,

Chapter 2

[����]

Now yAxis�LV�DQ�DUUD\�RI�D[LV�FRQÀJXUDWLRQV��7KH�ÀUVW�HQWU\�LQ�WKH�DUUD\�LV�IRU�1DVGDT�
and the second one is for Dow Jones. This time we display the axis title to distinguish
between both. The opposi te property is to put the Dow Jones y axis onto the other
side of the graph for clarity. Otherwise, both y axes appear on the left-hand side.

The next step is to align indices from the y-axis array to the series data array,
as follows:

 ser ies: [{
 name: 'Nasdaq ' ,
 yAxis: 0,
 data: [. . .]
 }, {
 name: 'Dow Jones ' ,
 yAxis: 1,
 data: [. . .]
 }]

We can clearly see the indices' movement in the new graph, as follows:

0RUHRYHU��ZH�FDQ�LPSURYH�WKH�ÀQDO�YLHZ�E\�FRORU�PDWFKLQJ�WKH�VHULHV�WR�WKH�D[LV�
lines. The Highcharts.colors property contains a list of default colors for the
VHULHV��VR�ZH�XVH�WKH�ÀUVW�WZR�HQWULHV�IRU�RXU�LQGLFHV��$QRWKHU�improvement is to set
maxPadding for the x axis, because the new y-axis line covers parts of the data points
at the high end of the x axis:

 xAxis: {
 . . . ,
 minPadding: 0.02,

+LJKFKDUWV�&RQÀJXUDWLRQV

[����]

 maxPadding: 0.02
 },
 yAxis: [{
 t i t le: {
 text : 'Nasdaq '
 },
 l ineWidth: 2,
 l ineColor : ' #4572A7 ' ,
 t ickWidth: 3,
 t ickLength: 6,
 t ickColor : ' #4572A7 '
 }, {
 t i t le: {
 text : 'Dow Jones '
 },
 opposi te: t rue,
 l ineWidth: 2,
 l ineColor : ' #AA4643 ' ,
 t ickWidth: 3,
 t ickLength: 6,
 t ickColor : ' #AA4643 '
 }] ,

The following screenshot shows the improved look of the chart:

Chapter 2

[����]

We can extend the preceding example and have more than a couple of axes, simply
by adding entries into the yAxis and series arrays and mapping both together. The
following screenshot shows a four-axes line graph:

5HYLVLWLQJ�WKH�VHULHV�FRQ¿JXUDWLRQ
By now, we should have an idea of what series properties do. In this section we are
going to examine it in more detail.

The series�SURSHUW\�LV�DQ�DUUD\�RI�VHULHV�FRQÀJXUDWLRQ�REMHFWV�WKDW�FRQWDLQ�GDWD��DQG�
VHULHV�VSHFLÀF�RSWLRQV��,W�DOORZV�XV�WR�VSHFLI\�VLQJOH�VHULHV�GDWD�DQG�PXOWLSOH�VHULHV�
data. The purpose of series objects is to inform Highcharts of the format of the data
and how the data is presented in the chart.

$OO�WKH�GDWD�YDOXHV�LQ�WKH�FKDUW�DUH�VSHFLÀHG�WKURXJK�WKH�data�ÀHOG��7KH�data�ÀHOG is
KLJKO\�ÁH[LEOH��DQG�LW�FDQ�WDNH�DQ�DUUD\�LQ�D�QXPEHU�RI�IRUPV��DV�IROORZV�

�� Numerical values
�� An array with x and y values
�� Point object with properties describing the data point

+LJKFKDUWV�&RQÀJXUDWLRQV

[����]

7KH�ÀUVW�WZR�RSWLRQV�KDYH�DOUHDG\�EHHQ�H[DPLQHG�LQ�WKH�$FFHVVLQJ�D[LV�GDWD�W\SH
section. In this section we will explore the third option. Let's use the single series
Nasdaq example and we will specify the series data through a mixture of numerical
values and objects:

 ser ies: [{
 name: 'Nasdaq ' ,
 pointStar t : Date.UTC(2012, 4, 11, 9, 30) ,
 pointInterval : 30 * 60 * 1000,
 data: [{
 / / Fi rst data point
 y: 2606.01,
 marker: {
 symbol : ' ur l(. /sun.png) '
 }
 }, 2622.08, 2636.03, 2637.78,
 {
 / / Highest data point
 y: 2639.15,
 dataLabels: {
 enabled: t rue
 },
 marker: {
 f i l lColor : ' #33CC33 ' ,
 radius: 5
 }
 }, 2637.09, 2633.38, 2632.23, 2632.33,
 2632.59, 2630.34, 2626.89, 2624.59,
 {
 / / Last data point
 y: 2615.98,
 marker: {
 symbol : ' ur l(. /moon.png) '
 }
 }]
 }]

Chapter 2

[����]

7KH�ÀUVW�DQG�WKH�ODVW�GDWD�SRLQWV�DUH�REMHFWV�WKDW�KDYH�\�D[LV�YDOXHV�DQG�LPDJH�ÀOHV�WR�
LQGLFDWH�WKH�RSHQLQJ�DQG�FORVLQJ�RI�WKH�PDUNHW��7KH�KLJKHVW�GDWD�SRLQW�LV�FRQÀJXUHG�
with a different color and data label. The size of the data point is also set slightly
larger than default. The rest of the data arrays are just numerical values, as shown in
the following screenshot:

There is currently a minor defect in aligning a single data point with an image.
However, it helps in perfecting with assigning image properties to the whole series
(ht tp: / /gi thub.com/highsl ide-software/highcharts.com/ issues/969).

Exploring PlotOptions
plotOpt ions�LV�D�ZUDSSHU�REMHFW�IRU�FRQÀJ�objects for each series type, which
are area, areaspline, bar, column, pie, scatter, spline gauge, and range. These
FRQÀJXUDWLRQV�KDYH�SURSHUWLHV�VXFK�DV�plotOpt ions. l ine. l ineWidth, common
WR�RWKHU�VHULHV�W\SHV��DV�ZHOO�DV�RWKHU�FRQÀJXUDWLRQV�VXFK�DV�plotOpt ions.pie.
center, ZKLFK�LV�RQO\�VSHFLÀF�WR�WKH�SLH�VHULHV�W\SH��$PRQJ�WKH�VSHFLÀF�VHULHV��WKHUH�
is plotOpt ions.series, which is used for common plotting options shared by the
whole series.

The preceding plotOpt ions can form a chain of precedence between plotOpt ions.
series, plotOpt ions.{series-type}��DQG�WKH�VHULHV�FRQÀJXUDWLRQ��)RU�H[DPSOH��
series[x] .shadow (where series[x] . type is ' pie ') has a higher precedence
than plotOpt ions.pie.shadow, which in turn has a higher precedence than
plotOpt ions.series.shadow.

+LJKFKDUWV�&RQÀJXUDWLRQV

[����]

The purpose of this is the chart composed of multiple different series types. For
example, a chart with multiple series of columns and a single line series, so the
FRPPRQ�SURSHUWLHV�EHWZHHQ�FROXPQ�DQG�OLQH�FDQ�EH�GHÀQHG�LQ�plotOpt ions.
series.*, whereas plotOpt ions.column and plotOpt ions. l ine hold their own
VSHFLÀF�SURSHUW\�YDOXHV��0RUHRYHU��SURSHUWLHV�LQ�plotOpt ions.{series-type}.*
FDQ�EH�IXUWKHU�RYHUULGGHQ�E\�WKH�VDPH�VHULHV�W\SH�VSHFLÀHG�LQ�WKH�VHULHV�DUUD\�

7KH�IROORZLQJ�LV�D�UHIHUHQFH�IRU�WKH�FRQÀJXUDWLRQV�LQ�precedence. The higher-level
RQHV�KDYH�ORZHU�SUHFHGHQFH��ZKLFK�PHDQV�FRQÀJXUDWLRQV�GHÀQHG�LQ�D�ORZHU�FKDLQ�
FDQ�RYHUULGH�WKH�GHÀQHG�SURSHUWLHV�LQ�WKH�KLJKHU�OHYHO�RI�WKH�FKDLQ��)RU�WKH�VHULHV�
array, preference is valid if series[x] . type or the default series type value is the
same as the series type in plotOpt ions.

chart .defaul tSeriesType or chart . type
 ser ies[x] . type

plotOpt ions.series.{seriesProperty}
 plotOpt ions.{series-type}.{seriesProperty}
 ser ies[x] .{seriesProperty}

plotOpt ions.points.events.*
 ser ies[x] .data[y] .events.*

plotOpt ions.series.marker .*
 ser ies[x] .data[y] .marker .*

plotOpt ions contains properties controlling how a series type is presented in
the chart; for example, inverted charts, series colors, stacked column charts, user
interactions to the series, and so on. All these options will be covered in detail when we
study each type of chart. Meanwhile, we will explore the concept of plotOpt ions with
D�PRQWKO\�1DVGDT�JUDSK��7KH�JUDSK�KDV�ÀYH�GLIIHUHQW�VHULHV�GDWD³RSHQ��FORVH��KLJK��
low, and volume. Normally, this data is used for plotting daily stock charts (OHLCV).
We compact them into a single chart for the purpose of demonstrating plotOpt ions.

Chapter 2

[����]

7KH�IROORZLQJ�LV�WKH�FKDUW�FRQÀJXUDWLRQ�FRGH�IRU�generating the preceding graph:

 chart : {
 renderTo: ' container ' ,
 height : 250,
 spacingRight : 30
 },
 t i t le: {
 text : 'Market Data: Nasdaq 100 '
 },
 subt i t le: {
 text : ' 2011 - 2012 '
 },
 xAxis: {
 categories: [' Jan ' , 'Feb ' , 'Mar ' , 'Apr ' ,
 'May ' , ' Jun ' , ' Jul ' , 'Aug ' ,
 ' Sep ' , 'Oct ' , 'Nov ' , 'Dec '] ,
 labels: {
 y: 17
 },
 gr idLineDashStyle: ' dot ' ,
 gr idLineWidth: 1,
 l ineWidth: 2,
 l ineColor : ' #92A8CD ' ,
 t ickWidth: 3,
 t ickLength: 6,
 t ickColor : ' #92A8CD ' ,

+LJKFKDUWV�&RQÀJXUDWLRQV

[����]

 minPadding: 0.04,
 offset : 1
 },
 yAxis: [{
 t i t le: {
 text : 'Nasdaq index '
 },
 min: 2000,
 minorGr idLineColor : ' #D8D8D8 ' ,
 minorGr idLineDashStyle: ' dashdot ' ,
 gr idLineColor : ' #8AB8E6 ' ,
 al ternateGr idColor : {
 l inearGradient : {
 x1: 0, y1: 1,
 x2: 1, y2: 1
 },
 stops: [[0, ' #FAFCFF '] ,

 [0.5, ' #F5FAFF '] ,
 [0.8, ' #E0F0FF '] ,
 [1, ' #D6EBFF ']]
 },
 l ineWidth: 2,
 l ineColor : ' #92A8CD ' ,
 t ickWidth: 3,
 t ickLength: 6,
 t ickColor : ' #92A8CD '
 }, {
 t i t le: {
 text : 'Volume '
 },
 l ineWidth: 2,
 l ineColor : ' #3D96AE ' ,
 t ickWidth: 3,
 t ickLength: 6,
 t ickColor : ' #3D96AE ' ,
 opposi te: t rue
 }] ,
 credi ts: {
 enabled: false
 },
 plotOpt ions: {
 column: {
 stacking: ' normal '
 },
 l ine: {
 zIndex: 2,

Chapter 2

[����]

 marker: {
 radius: 3,
 l ineColor : ' #D9D9D9 ' ,
 l ineWidth: 1
 },
 dashStyle: ' ShortDot '
 }
 },
 ser ies: [{
 name: 'Monthly High ' ,
 / / Use stacking column chart - values on
 / / top of monthly low to simulate monthly
 / / high
 data: [98.31, 118.08, 142.55, 160.68, . . .] ,
 type: ' column '
 }, {
 name: 'Monthly Low ' ,
 data: [2237.73, 2285.44, 2217.43, . . .] ,
 type: ' column '
 }, {
 name: 'Open (Star t of the month) ' ,
 data: [2238.66, 2298.37, 2359.78, . . .]
 }, {
 name: 'Close (End of the month) ' ,
 data: [2336.04, 2350.99, 2338.99, . . .]
 }, {
 name: 'Volume ' ,
 data: [1630203800, 1944674700, 2121923300, . . .] ,
 yAxis: 1,
 type: ' column ' ,
 stacking: nul l
 }]
 }

Although the graph looks slightly complicated, we will go through the code
step-by-step to make it clearer. First, there are two entries in the yAxis array: the
ÀUVW�RQH�LV�IRU�WKH�1DVGDT�LQGH[��WKH�VHFRQG�\�D[LV��GLVSOD\HG�RQ�WKH�ULJKW�KDQG�VLGH�
(opposi te: t rue���LV�IRU�WKH�YROXPH�WUDGH��,Q�WKH�VHULHV�DUUD\��WKH�ÀUVW�DQG�VHFRQG�
VHULHV�DUH�VSHFLÀHG�DV�FROXPQ�VHULHV�W\SHV��type: ' column '), which override the
default series type ' l ine ' . Then the stacking�RSWLRQ�LV�GHÀQHG�DV� ' normal ' in
plotOpt ions.column, which stacks the monthly high on top of the monthly low
column (blue and red columns). Strictly speaking, the stacked column chart is used
for displaying the ratio of data belonging to the same category. For the sake of
demonstrating plotOpt ions, we use the stacked column chart to show the upper
and lower end of monthly trade. To do that, we take the difference between monthly
high and monthly low and substitute the differences back into the monthly high
series. Hence, in the code, we can see that the data values in the monthly high series
are much smaller than the monthly low.

+LJKFKDUWV�&RQÀJXUDWLRQV

[����]

The third and fourth series are the market open and market close index; both take
WKH�GHIDXOW�OLQH�VHULHV�W\SH�DQG�LQKHULW�RSWLRQV�GHÀQHG�IURP�plotOpt ions. l ine.
The zIndex option is assigned to 2�IRU�RYHUOD\LQJ�ERWK�OLQH�VHULHV�RQ�WRS�RI�WKH�ÀIWK�
volume series, otherwise both lines are covered by the volume columns. The marker
REMHFW�FRQÀJXUDWLRQV�DUH�WR�UHGXFH�WKH�GHIDXOW�GDWD�SRLQW�VL]H��DV�WKH�ZKROH�JUDSK�LV�
already compacted with columns and lines.

The last column series is the volume trade, and the stacking option in the series
is manually set to nul l , which overrides the inherited option from plotOpt ions.
column. This resets the series back to the non-stacking option, that is, displaying as a
separate column. Finally, the yAxis index option is set to align with the y axis of the
Volume series (yAxis: 1).

Styling the tooltips
Tooltips in Highcharts are enabled by the boolean option tool t ip.enabled, which
is t rue�E\�GHIDXOW��7KHLU�FRQWHQW�IRUPDWV�DUH�ÁH[LEOH��ZKLFK�FDQ�EH�GHÀQHG�YLD�
a callback handler or in HTML style. We will continue from the example in the
previous section. As the chart is packed with multiple lines and columns, ÀUVW�ZH�FDQ�
enable the crosshair tooltip for helping us align the data points onto the axes. The
crosshairs�FRQÀJXUDWLRQ�FDQ�WDNH�HLWKHU�D�%RROHDQ�YDOXH�WR�DFWLYDWH�WKH�IHDWXUH�RU�
an object style for the crosshair line style. The following is the code snippet to set up
FURVVKDLUV�ZLWK�DQ�DUUD\�RI�[��DQG�\�D[LV�FRQÀJXUDWLRQV�IRU�WKH�JUD\�FRORU�DQG�GDVK�
line styles.

 tool t ip : {
 crosshairs: [{
 color : ' #5D5D5D ' ,
 dashStyle: ' dash ' ,
 width: 2
 }, {
 color : ' #5D5D5D ' ,
 dashStyle: ' dash ' ,
 width: 2
 }]
 },

Again, the dashStyle option uses the same common line
style values in Highcharts. See the crosshairs reference
manual for all the possible values.

The following screenshot shows the cursor hovering over a data point of the
market close series. We can see a tooltip box appearing next to the pointer and gray
crosshairs for both axes:

Chapter 2

[����]

Formatting the tooltips in HTML
Highcharts provides template options such as headerFormat , pointFormat , and
footerFormat �WR�FRQVWUXFW�WKH�WRROWLS�E\�VSHFLÀF�WHPSODWH�YDULDEOHV��RU�PDFURV���
7KHVH�VSHFLÀF�YDULDEOHV�DUH�VHULHV�DQG�SRLQW��DQG�we can use their properties, such
as point .x, point .y, series.name, and series.color, within the template. For
instance, the default tooltip setting uses pointFormat , which has the default value of
the following code snippet:

{series.name}:
{point .y}

Highcharts internally translates the preceding expression into SVG text markups,
hence only a subset of HTML syntax can be supported, which is ,
,
, , <i>, , <href>, and font style attributes in CSS. However,
LI�ZH�ZDQW�WR�KDYH�PRUH�ÁH[LELOLW\�LQ�SROLVKLQJ�WKH�FRQWHQW�DQG�WKH�FDSDELOLW\�WR�
LQFOXGH�LPDJH�ÀOHV��ZH�QHHG�WR�XVH�WKH�useHTML option for a full HTML tooltip. This
option allows us to do the following:

�� Use other HTML tags such as inside the tooltip
�� Create a tooltip in real HTML content, so that it is outside the SVG markups

+LJKFKDUWV�&RQÀJXUDWLRQV

[70]

Here, we are going to format an HTML table inside a tooltip. We will use
headerFormat to create a header column for the category and a bottom border to
separate between header and data. Then we will use pointFormat to set up an icon
LPDJH�DORQJ�ZLWK�WKH�VHULHV�QDPH�DQG�GDWD��7KH�LPDJH�ÀOH�LV�EDVHG�RQ�WKH�series.
index macro, so different series have different image icons. We use the series.
color macro to highlight the series name with the same color in the chart and apply
the series.data macro for the series value.

 tool t ip : {
 useHTML: t rue,
 headerFormat : ' <table><thead><tr> ' +
 ' <th style="border-bot tom: 2px sol id #6678b1; color :
#039" ' +
 ' colspan=2 >{point .key}</ th></ tr></ thead><tbody> ' ,
 pointFormat : ' <t r><td style="color : {series.color}"> ' +
 ' <img src=". /ser ies_{series. index}.png" ' +
 ' style="vert ical-al ign: text-bot tom; margin-r ight : 5px" > '
+
 ' {series.name}: </ td><td style="text-al ign: r ight ; color :
#669;"> ' +
 ' {point .y}</ td></ tr> ' ,
 footerFormat : ' </ tbody></ table> '
 },

So when we hover over a data point, the template variable point is substituted
internally by the hovered point object, and the series is replaced by the series object
containing the data point.

The following is the screenshot of the new tooltip. The icon next to the series name
indicates market close:

Using the callback handler
Alternatively, we can implement the tooltip through the callback handler in
JavaScript. The tooltip handler is declared through the format ter option. The
major difference between template options and handler is that we can disable the
tooltip display for certain points by setting conditions and return false, whereas
for template options we cannot. In the callback example, we use the this.ser ies
and this.point variables for the series name and values for the data point that is
hovered over.

Chapter 2

[71]

The following is an example of the handler:
 format ter : funct ion() {
 return ' ' +
 this.point .category +
 '
<span style="color : ' +
 this.ser ies.color + ' "> ' + this.ser ies.name +
 ' : '
+ this.point .y + ' ' ;
 }

The preceding handler code returns an SVG text tooltip with the series name,
category, and value, as shown in the following screenshot:

Applying a multiple series tooltip
$QRWKHU�ÁH[LEOH�WRROWLS�IHDWXUH�LV�WR�DOORZ�DOO�WKH�VHULHV�GDWD�WR�EH�GLVSOD\HG�LQVLGH�
WKH�VDPH�WRROWLS��7KLV�VLPSOLÀHV�XVHU�LQWHUDFWLRQ�WR�look up for multiple series data in
one action. To enable this feature, we need to set the shared option to t rue.

We will continue with the previous example for the multiple series tooltip.
The following is the new tooltip code:

 shared: t rue,
 useHTML: t rue,
 headerFormat : ' <table><thead><tr><th colspan=2 > ' +
 ' {point .key}</ th></ tr></ thead><tbody> ' ,
 pointFormat : ' <t r><td style="color : {series.color}"> ' +
 ' {series.name}: </ td> ' +
 ' <td style="text-al ign: r ight ; color : #669;"> '
 + ' {point .y}</ td></ tr> ' ,
 footerFormat : ' </ tbody></ table> '

The preceding code snippet will produce the following screenshot:

+LJKFKDUWV�&RQÀJXUDWLRQV

[72]

As previously discussed, we will use the monthly high and monthly low series
to plot stacked columns, which is actually used for plotting data within the same
category. Therefore, the tooltip for the monthly high series is showing the subtracted
values that we previously put in. To correct this within the tooltip, we can use the
handler to apply different properties for the monthly high series, as follows:

 shared: t rue,

 format ter : funct ion() {
 return ' ' +
 this.x + '
 ' +
 this.points.map(funct ion(point , idx) {
 return ' <span style="color : ' + point .ser ies.color +
 ' "> ' + point .ser ies.name +
 ' : <span style="color :#669;font-
weight :bold"> ' +
 Highcharts.numberFormat((idx == 0) ? point . total
: point .y) + ' ' ;
 }) . join('
 ') ;
 }

point . total is the total of the difference and the monthly low series value. The
following screenshot shows the new corrected Monthly High value:

Animating charts
There are two types of animations in Highcharts—initial and update animations.
Initial animation is the animation when series data is ready and the chart is
displayed; update animation is after the initial animation and when the series data or
any parts of the chart anatomy have been changed.

Chapter 2

[73]

7KH�LQLWLDO�DQLPDWLRQ�FRQÀJXUDWLRQV�FDQ�EH�VSHFLÀHG�WKURXJK�plotOpt ions.series.
animat ion or plotOpt ions.{series-type}.animat ion, whereas the update
DQLPDWLRQ�LV�FRQÀJXUHG�YLD�WKH�chart .animat ion property.

All the Highcharts animations use jQuery implementation. The animat ion property
can be a boolean value or a set of animation options. Highcharts uses jQuery swing
animation. The following are the options:

�� durat ion: The time, in milliseconds, to complete the animation.
�� easing: The type of animation jQuery provided. The variety of animations

can be extended by importing the jQuery UI plugin. A good source of
reference can be found at ht tp: / /plugindetector .com/demo/
easing-jquery-ui / .

Here, we continue the example from the previous section. We will apply the
animation settings into plotOpt ions.column and plotOpt ions. l ine, as follows:

 plotOpt ions: {
 column: {
 . . . ,
 animat ion: {
 durat ion: 2000,
 easing: ' swing '
 }
 },
 l ine: {
 ,
 animat ion: {
 durat ion: 3000,
 easing: ' l inear '
 }
 }
 },

+LJKFKDUWV�&RQÀJXUDWLRQV

[74]

The animations are tuned into at a much slower pace, so we can notice the difference
between linear and swing animations. The line series appears in a linear speed along
the x axis, whereas the column series expands upwards in a linear speed and then
decelerates sharply when approaching the end of the display. The following is a
screenshot showing an ongoing linear animation:

Expanding colors with gradients
Highcharts not only supports single color values, but also allows complex color
JUDGLHQW�GHÀQLWLRQV��+LJKFKDUWV�VXSSRUWV�OLQHDU�JUDGLHQW��ZKLFK�LV�D�GLUHFWLRQDO�FRORU�
shading as well as radial (or circular) gradient. In this section, we will experiment
with linear gradient, and the radial gradient will be explored in Chapter 6, *DXJH��
3RODU��DQG�5DQJH�&KDUWV. In Highcharts, the color gradient is based on the SVG linear
color gradient standard, which is composed of two sets of information, as follows:

�� l inearGradient : This gives a gradient direction for the color spectrum
made up of two sets of x and y coordinates; ratio values are between 0 and 1,
or in percentages

Chapter 2

[75]

�� stops: This gives a sequence of FRORUV�WR�EH�ÀOOHG�LQ�WKH�VSHFWUXP�DQG�WKHLU�
ratio positions within the gradient direction

We use the previous stock market example with only the Volume series, and
UHGHÀQH�yAxis.al ternateGr idColor as follows:

 yAxis: [{
 t i t le: { text : 'Nasdaq index ' },

 al ternateGr idColor : {
 l inearGradient : [10, 250, 400, 250] ,
 stops: [
 [0, ' red '] ,
 [0.2, ' orange '] ,
 [0.5, ' yel low '] ,
 [0.8, ' green '] ,
 [1, ' l ime ']]
 }

l inearGradient is an array of coordinate values that are arranged in the x1, y1, x2,
and y2 order. The values can be absolute coordinates, percentage strings, or ratio
YDOXHV�EHWZHHQ���DQG����7KH�GLIIHUHQFH�LV�WKDW�FRORUV�GHÀQHG�LQ�FRRUGLQDWH�YDOXHV�FDQ�
be affected by the chart size, whereas percentage and ratio values can avoid that.

The array syntax for absolute position gradients is deprecated
because it doesn't work similarly between SVG and VML,
and also it doesn't scale well with varying sizes of the charts.

The stops property KDV�DQ�DUUD\�RI�WXSOHV��WKH�ÀUVW�YDOXH�LV�WKH�RIIVHW�UDQJLQJ�IURP�
��WR���DQG�WKH�VHFRQG�YDOXH�LV�WKH�FRORU�GHÀQLWLRQ��7KH�RIIVHW�DQG�FRORU�YDOXHV�GHÀQH�
where the color is positioned within the spectrum. For example, [0, ' red '] and
[0.2, ' orange '] mean starting with the red color at the beginning and gradually
changing the color to orange in the horizontal direction towards the position at x =
80 (0.2 * 400), and then changing from the orange color at x = 80 to the yellow color at
x = 200, and so on. The following is a screenshot of the multicolor gradient:

+LJKFKDUWV�&RQÀJXUDWLRQV

[����]

As we can see, the red and orange colors are not appearing in the chart because
the gradient is based on coordinates. Hence, depending on the size of the chart,
the position of the x axis exceeds the red and orange coordinates in this example.
Alternatively, we can specify l inearGradient in terms of percentage, as follows:

l inearGradient : [' 20% ' , 250, ' 90% ' , 250]

This means l inearGradient stretches from 20% of the width of the chart to 90%, so
that the color bands are not limited to the size of the chart. The following screenshot
shows the effect of the new l inearGradient setting:

The chart background now has the complete color spectrum. As for specifying
ratio values between 0 and 1, l inearGradient �PXVW�EH�GHÀQHG�LQ�DQ�REMHFW�VW\OH��
otherwise the values will be treated as coordinates. Note that the ratio values are
referred to as the fraction over the plot area only, and not the whole chart.

l inearGradient : { x1: 0, y1: 0, x2: 1, y2: 0 }

Chapter 2

[77]

The preceding line of code is an alternative way for setting the horizontal gradient.

The following line of code adjusts the vertical gradient:

 l inearGradient : { x1: 0, y1: 0, x2: 0, y2: 1 }

This produces a gradient background in the vertical direction. We also set the ' Jan '
and ' Jul ' data points individually as point objects with linear shading in the
vertical direction.

+LJKFKDUWV�&RQÀJXUDWLRQV

[78]

Moreover, we can manipulate Highcharts' standard colors to trigger the color
gradient on the series plot. This approach is taken from a post in a Highcharts forum
experimenting on a 3D charts look. Before plotting a chart, we need to overwrite the
default series color with a gradient color. The following code snippet replaces the
ÀUVW�VHULHV�FRORU�ZLWK�KRUL]RQWDO�EOXH�JUDGLHQW�VKDGLQJ��1RWH�WKDW�WKH�UDWLR�JUDGLHQW�
values in this example are referring to the width of the series column:

 $(document) . ready(funct ion() {

 Highcharts.getOpt ions() .colors[0] = {
 l inearGradient : { x1: 0, y1: 0, x2: 1, y2: 0 },
 stops: [[0, ' #4572A7 '] ,
 [0.7, ' #CCFFFF '] ,
 [1, ' #4572A7 ']]
 };

 var chart = new Highcharts.Chart({ . . .

The following is the screenshot of a column chart with color shading:

Summary
,Q�WKLV�FKDSWHU��PDMRU�FRQÀJXUDWLRQ�FRPSRQHQWV�ZHUH�GLVFXVVHG�DQG�H[SHULPHQWHG�
with examples shown. By now, we should be comfortable and ready to plot some of
the basic graphs with more elaborate styles. In the next chapter, we will explore line,
DUHD��DQG�VFDWWHU�JUDSKV�VXSSRUWHG�E\�+LJKFKDUWV��:H�ZLOO�DSSO\�FRQÀJXUDWLRQV�WKDW�
ZH�KDYH�OHDUQHG�LQ�WKLV�FKDSWHU�DQG�H[SORUH�WKH�VHULHV�VSHFLÀF�VW\OH�RSWLRQV�WR�SORW�
charts in an artistic style.

Line, Area, and
Scatter Charts

In this chapter, we will learn about line, area, and scatter charts and explore their
plotting options in more details. We will also learn how to create stacked chart and
projection charts. Then, we will attempt to plot the charts in a slightly more artistic
style. The reason for that is to provide us with an opportunity to utilize various
plotting options. In this chapter we will cover the following:

�� Introducing line charts
�� Sketching an area chart
�� Mixing line and area series
�� Combining scatter and area series

Introducing line charts
First let's start with a single series line chart. We will use one of the many data
provided by The World Bank organization at www .worldbank.org. The following
is the code snippet to create a simple line chart which shows the percentage of
population ages, 65 and above, in Japan for the past three decades:

 var chart = new Highcharts.Chart({
 chart : {
 renderTo: ' container '
 },
 t i t le: {
 text : 'Populat ion ages 65 and over (% of total) ' ,
 },
 credi ts: {
 posi t ion: {

Line, Area, and Scatter Charts

[80]

 al ign: ' lef t ' ,
 x: 20
 },
 text : 'Data from The World Bank '
 },
 yAxis: {
 t i t le: {
 text : 'Percentage % '
 }
 },
 xAxis: {
 categories: [' 1980 ' , ' 1981 ' ,
 ' 1982 ' , . . .] ,
 labels: {
 step: 5
 }
 },
 ser ies: [{
 name: ' Japan - 65 and over ' ,
 data: [9, 9, 9, 10, 10, 10, 10 . . .]
 }]
}) ;

The following is the display of the simple chart:

Chapter 3

[81]

Instead of specifying the year number manually as strings in categories, we can use
the pointStar t option in the series�FRQÀJ�WR�LQLWLDWH�WKH�[�D[LV�YDOXH�IRU�WKH�ÀUVW�
point. So we have an empty xAxis�FRQÀJ�DQG�series�FRQÀJ��DV�IROORZV�

 xAxis: {
 },
 ser ies: [{
 pointStar t : 1980,
 name: ' Japan - 65 and over ' ,
 data: [9, 9, 9, 10, 10, 10, 10 . . .]
 }]

$OWKRXJK�WKLV�VLPSOLÀHV�WKH�H[DPSOH��WKH�[�D[LV�ODEHOV�DUH�DXWRPDWLFDOO\�IRUPDWWHG�
by Highcharts utility method, numberFormat , which adds a comma after every three
digits. The following is the outcome on the x axis:

Line, Area, and Scatter Charts

[82]

To resolve the x-axis label, we overwrite the label's format ter option by simply
returning the value to bypass the numberFormat method being called. Also we need
to set the al lowDecimals option to false. The reason for that is when the chart is
UHVL]HG�WR�HORQJDWH�WKH�[�D[LV��GHFLPDO�YDOXHV�DUH�VKRZQ��7KH�IROORZLQJ�LV�WKH�ÀQDO�
change to use pointStar t for the year values:

 xAxis: {
 labels:{
 format ter : funct ion() {
 / / ' this ' keyword is the label object
 return this.value;
 }
 },
 al lowDecimals: false
 },
 ser ies: [{
 pointStar t : 1980,
 name: ' Japan - 65 and over ' ,
 data: [9, 9, 9, 10, 10, 10, 10 . . .]
 }]

Extending to multiple series line charts
We can include several more line series and set the Japan series by increasing the line
width to be 6 pixels wide, as follows:

 ser ies: [{
 l ineWidth: 6,
 name: ' Japan ' ,
 data: [9, 9, 9, 10, 10, 10, 10 . . .]
 }, {
 Name: ' Singapore ' ,
 data: [5, 5, 5, 5, . . .]
 }, {
 . . .
 }]

Chapter 3

[83]

The line series for Japanese population becomes the focus in the chart, as shown in
the following screenshot:

Let's move on to a more complicated line graph. For the sake of demonstrating
inverted line graphs, we use the chart . inverted�RSWLRQ�WR�ÁLS�WKH�\�DQG�x axes to
opposite orientations. Then we change the line colors of the axes to match the same
series colors as we did in previous chapter. We also disable data point markers for
all the VHULHV�DQG�ÀQDOO\�DOLJQ�WKH�VHFRQG�VHULHV�WR�WKH�VHFRQG�HQWU\�LQ�WKH�\�D[LV�
array, as follows:

 chart : {
 renderTo: ' container ' ,
 inverted: t rue,
 },
 yAxis: [{
 t i t le: {
 text : 'Percentage % '
 },
 l ineWidth: 2,
 l ineColor : ' #4572A7 '
 }, {

Line, Area, and Scatter Charts

[84]

 t i t le: {
 text : 'Age '
 },
 opposi te: t rue,
 l ineWidth: 2,
 l ineColor : ' #AA4643 '
 }] ,
 plotOpt ions: {
 ser ies: {
 marker: {
 enabled: false
 }
 }
 },
 ser ies: [{
 name: ' Japan - 65 and over ' ,
 type: ' spl ine ' ,
 data: [9, 9, 9, . . .]
 }, {
 name: ' Japan - Li fe Expectancy ' ,
 yAxis: 1,
 data: [76, 76, 77, . . .]
 }]

The following is the inverted graph with double y axes:

Chapter 3

[85]

The data representation of the chart may look slightly odd as the usual time labels
are swapped to the y axis and the data trend is awkward to comprehend. The
inverted option is normally used for showing data in a noncontinuous form and in
bar format. If we interpret the data from the graph, 12 percent of the population is 65
and over, and the life expectancy is 79 in 1990.

By setting plotOpt ions.series.marker .enabled to false it switches off all the
data point markers. If we want to display a point marker for a particular series, we
can either switch off the marker globally and then set the marker on an individual
series, or the other way round.

 plotOpt ions: {
 ser ies: {
 marker: {
 enabled: false
 }
 }
 },
 ser ies: [{
 marker: {
 enabled: t rue
 },
 name: ' Japan - 65 and over ' ,
 type: ' spl ine ' ,
 data: [9, 9, 9, . . .]
 }, {

The following graph demonstrates that only the 65 and over series has point markers:

Line, Area, and Scatter Charts

[����]

Sketching an area chart
,Q�WKLV�VHFWLRQ��ZH�DUH�JRLQJ�WR�XVH�RXU�YHU\�ÀUVW�H[DPSOH�DQG�WXUQ�LW�LQWR�D�PRUH�
stylish graph (based on the design of wind energy poster by Kristin Clute), which
is an area spline chart. An area spline chart is generated using the combined
properties of area and spline charts. The main data line is plotted as a spline curve
DQG�WKH�UHJLRQ�XQGHUQHDWK�WKH�OLQH�LV�ÀOOHG�LQ�D�VLPLODU�FRORU�ZLWK�D�JUDGLHQW�DQG�
an opaque style.

Firstly, we want to make the graph easier for viewers to look up the values for the
current trend, so we move the y axis next to the latest year, that is, to the opposite
side of the chart:

 yAxis: {
 opposi te: t rue
 }

The next thing is to remove the interval lines and have a thin axis line along the
y axis:

 yAxis: {
 gr idLineWidth: 0,
 l ineWidth: 1,
 }

Chapter 3

[87]

Then we simplify the y-axis title with a percentage sign and align it to the top of
the axis:

 yAxis: {
 t i t le: {
 text : ' (%) ' ,
 rotat ion: 0,
 x: 10,
 y: 5,
 al ign: ' high '
 },
 }

As for the x axis, we thicken the axis line with a red color and remove the
interval ticks:

 xAxis: {
 l ineColor : ' #CC2929 ' ,
 l ineWidth: 4,
 t ickWidth: 0,
 offset : 2
 }

For the chart title, we move the title to the right of the chart, increase the margin
between the chart and the title, and then adopt a different font for the title:

 t i t le: {
 text : 'Populat ion ages 65 and over (% of total) -
Japan ' ,
 margin: 40,
 al ign: ' r ight ' ,
 style: {
 fontFami ly: ' palat ino '
 }
 }

$IWHU�WKDW�ZH�DUH�JRLQJ�WR�PRGLI\�WKH�ZKROH�VHULHV�SUHVHQWDWLRQ��ZH�ÀUVW�VHW�WKH�
chart . type property from ' l ine ' to ' areaspl ine ' . Notice that setting the
properties inside this series�REMHFW�ZLOO�RYHUZULWH�WKH�VDPH�SURSHUWLHV�GHÀQHG�LQ�
plotOpt ions.areaspl ine and so on in plotOpt ions.series.

Line, Area, and Scatter Charts

[88]

Since so far there is only one series in the graph, there is no need to display the
legend box. We can disable it with the showInLegend property. We then smarten
the area part with gradient color and the spline with a darker color:

 ser ies: [{
 showInLegend: false,
 l ineColor : ' #145252 ' ,
 f i l lColor : {
 l inearGradient : {
 x1: 0, y1: 0,
 x2: 0, y2: 1
 },
 stops:[[0.0, ' #248F8F '] ,
 [0.7, ' #70DBDB '] ,
 [1.0, ' #EBFAFA ']]
 },
 data: [. . .]
 }]

After that, we introduce a couple of data labels along the line to indicate that the
ranking of old age population has increased over time. We use the values in the
series data array corresponding to the year 1995 and 2010, and then convert the
numerical value entries into data point objects. Since we only want to show point
markers for these two years, we turn off markers globally in plotOpt ions.series.
marker .enabled and set the marker on, individually inside the point objects
accompanied with style settings:

 plotOpt ions: {
 ser ies: {
 marker: {
 enabled: false
 }
 }
 },
 ser ies: [{ . . . ,
 data:[9, 9, 9, . . . ,
 { marker: {
 radius: 2,
 l ineColor : ' #CC2929 ' ,
 l ineWidth: 2,
 f i l lColor : ' #CC2929 ' ,
 enabled: t rue
 },
 y: 14
 }, 15, 15, 16, . . .]
 }]

Chapter 3

[����]

We then set a bounding box around the data labels with round corners
(borderRadius) in the same border color (borderColor) as the x axis. The
GDWD�ODEHO�SRVLWLRQV�DUH�WKHQ�ÀQHO\�DGMXVWHG�ZLWK�WKH�x and y options. Finally,
we change the default implementation of the data label formatter. Instead of
returning the point value, we print the country ranking.

 ser ies: [{ . . . ,
 data:[9, 9, 9, . . . ,
 { marker: {
 . . .
 },
 dataLabels: {
 enabled: t rue,
 borderRadius: 3,
 borderColor : ' #CC2929 ' ,
 borderWidth: 1,
 y: -23,
 format ter : funct ion() {
 return "Rank: 15th";
 }
 },
 y: 14
 }, 15, 15, 16, . . .]
 }]

7KH�ÀQDO�WRXFK�LV�WR�DSSO\�D�JUD\�EDFNJURXQG�WR�WKH�FKDUW�DQG�DGG�H[WUD�VSDFH�LQWR�
spacingBot tom. The extra space for spacingBot tom is to avoid the credit label and
x-axis label getting too close together, because we have disabled the legend box.

 chart : {
 renderTo: ' container ' ,
 spacingBot tom: 30,
 backgroundColor : ' #EAEAEA '
 },

:KHQ�DOO�WKHVH�FRQÀJXUDWLRQV�DUH�SXW�WRJHWKHU��LW�SURGXFHV�WKH�H[DFW�FKDUW��DV�VKRZQ�
in the screenshot at the start of this section.

Line, Area, and Scatter Charts

[����]

Mixing line and area series
In this section we are going to explore different plots including line and area series
together, as follows:

�� Projection chart, where a single trend line is joined with two series in
different line styles

�� Plotting an area spline chart with another step line series
�� Exploring a stacked area spline chart, where two area spline series are

stacked on top of each other

Simulating a projection chart
The projection chart has spline area with the section of real data and continues in
a dashed line with projection data. To do that we separate the data into two series,
one for real data and the other for projection data. The following is the series
FRQÀJXUDWLRQ�FRGH�IRU�WKH�IXWXUH�GDWD�XS�WR�������7KLV�GDWD�LV�EDVHG�RQ�WKH�1DWLRQDO�
Institute of Population and Social Security Research report (ht tp: / /www . ipss.
go. jp/pp-newest /e/ppfj02/ppfj02.pdf).

 ser ies: [{
 name: ' project data ' ,
 type: ' spl ine ' ,
 showInLegend: false,
 l ineColor : ' #145252 ' ,
 dashStyle: 'Dash ' ,
 data: [[2010, 23] , [2011, 22.8] ,
 . . . [2024, 28.5]]
 }]

7KH�IXWXUH�VHULHV�LV�FRQÀJXUHG�DV�D�VSOLQH�LQ�D�GDVKHG�OLQH�VW\OH�DQG�WKH�OHJHQG�ER[�
is disabled, because we want to show both series as being from the same series. Then
ZH�VHW�WKH�IXWXUH��VHFRQG��VHULHV�FRORU�WKH�VDPH�DV�WKH�ÀUVW�VHULHV��7KH�ÀQDO�SDUW�LV�
to construct the series data. As we specify the x-axis time data with the pointStar t
property, we need to align the projection data after 2010. There are two approaches
that we can use to specify the time data in a continuous form, as follows:

�� Insert null values into the second series data array for padding to align with
the real data series

�� Specify the second series data in tuples, which is an array with both time
and projection data

Chapter 3

[����]

Next we are going to use the second approach because the series presentation is
simpler. The following is the screenshot only for the future data series:

The real data series is exactly the same as the graph in the screenshot at the start of
the Sketching an area chart section, except without the point markers and data label
decorations. The next step is to join both series together, as follows:

 ser ies: [{
 name: ' real data ' ,
 type: ' areaspl ine ' ,

 }, {
 name: ' project data ' ,
 type: ' spl ine ' ,

 }]

Line, Area, and Scatter Charts

[����]

Since there is no overlap between both series data, they produce a smooth
projection graph:

Contrasting spline with step line
In this section we are going to plot an area spline series with another line series but
in a step presentation. The step line transverses vertically and horizontally only
according to the changes in series data. It is generally used for presenting discrete
data, that is, data without continuous/gradual movement.

)RU�WKH�SXUSRVH�RI�VKRZLQJ�D�VWHS�OLQH��ZH�ZLOO�FRQWLQXH�IURP�WKH�ÀUVW�DUHD�VSOLQH�
example. First of all, we need to enable the legend by removing the disabled
showInLegend setting and also remove dataLabels in the series data.

Next is to include a new series, Ages 0 to 14, in the chart with a default line type.
Then we will change the line style slightly differently into steps. The following is the
FRQÀJXUDWLRQ�IRU�ERWK�VHULHV�

 ser ies: [{
 name: 'Ages 65 and over ' ,
 type: ' areaspl ine ' ,
 l ineColor : ' #145252 ' ,
 pointStar t : 1980,
 f i l lColor : {

 },

Chapter 3

[����]

 data: [9, 9, 9, 10, , 23]
 }, {
 name: 'Ages 0 to 14 ' ,
 / / defaul t type is l ine series
 step: t rue,
 pointStar t : 1980,
 data: [24, 23, 23, 23, 22, 22, 21,
 20, 20, 19, 18, 18, 17, 17, 16, 16, 16,
 15, 15, 15, 15, 14, 14, 14, 14, 14, 14,
 14, 14, 13, 13]
 }]

The following screenshot shows the second series in the stepped line style:

Extending to a stacked area chart
In this section we are going to turn both series into area splines and stack them on top
of each other to create a stacked area chart. As the data series are stacked together, we
can observe the series quantity roughly in individual, proportional, and total formats.

Let's change the second series into another ' areaspl ine ' type:

 name: 'Ages 0 to 14 ' ,
 type: ' areaspl ine ' ,
 pointStar t : 1980,
 data: [24, 23, 23, . . .]

Line, Area, and Scatter Charts

[����]

Set the stacking option to ' normal ' as a default setting for areaspl ine, as follows:

 plotOpt ions: {
 areaspl ine: {
 stacking: ' normal '
 }
 }

This sets both area graphs stacked on top of each other. By doing so we can observe
from the data that both age groups of population roughly compensate each other
to make up a total of around 33 percent of the total population and the Ages 65 and
over group is increasingly outpaced in the later stage:

Suppose we have three area spline series and we only want to stack two of them
(although it is clearer to do that in a columns chart than in an area spline chart). As
described in the Exploring PlotOptions section in Chapter 2, +LJKFKDUWV�&RQÀJXUDWLRQV,
we can set the stacking option in plotOpt ions.series to ' normal ' , and manually
turn off stacking�LQ�WKH�WKLUG�VHULHV�FRQÀJXUDWLRQ��7KH�IROORZLQJ�LV�WKH�VHULHV�
FRQÀJXUDWLRQ�ZLWK�DQRWKHU�VHULHV�

 plotOpt ions: {
 ser ies: {
 marker: {
 enabled: false
 },
 stacking: ' normal '

Chapter 3

[����]

 }
 },
 ser ies: [{
 name: 'Ages 65 and over ' ,

 }, {
 name: 'Ages 0 to 14 ' ,

 }, {
 name: 'Ages 15 to 64 ' ,
 type: ' areaspl ine ' ,
 pointStar t : 1980,
 stacking: nul l ,
 data: [67, 67, 68, 68, ]
 }]

This creates an area spline graph with the third series, Ages 15 to 64, covering the
other two stacked series, as shown in the following screenshot:

Line, Area, and Scatter Charts

[����]

Plotting charts with missing data
If a series has missing data, then Highcharts' default action is to display the series
as a broken line. There is an option, connectNul ls, which allows the series line to
continue even if there is missing data. The default value for this option is false. Let's
examine the default behavior by setting two spline series with null data points. Also,
we enable the point markers, so that we can clearly view the missing data points:

 ser ies: [{
 name: 'Ages 65 and over ' ,
 connectNul ls: t rue,
 ,
 / / Missing data from 2004 - 2009
 data: [9, 9, 9, , 23]

 }, {
 name: 'Ages 0 to 14 ' ,
 ,
 / / Missing data from 1989 - 1994
 data: [24, 23, 23, , 13]
 }]

The following is a chart with a spline series presenting missing points in
different styles:

Chapter 3

[����]

As we can see the Ages 0 to 14 series has a clear broken line, whereas Ages 65 and
over�LV�FRQÀJXUHG�ZLWK�VHWWLQJ�connectNul ls to t rue, which joins the missing
points with a spline curve. If the point marker is not enabled, we won't be able to
notice the difference.

However, we should use this option with caution and should especially never enable
it with the stacking option. Suppose we have a stacked area chart with both series
and there is missing data only in the Ages 0 to 14 series, which is the bottom series.
The default action for the missing data will make the graph look like the following
screenshot:

Although the bottom series does show the broken part, the stack graph overall still
remains correct. The same area of the top series drops back to single series values
and the overall percentage is still intact.

Line, Area, and Scatter Charts

[����]

The problem arises when we set the connectNul ls option to t rue and do not
realize that there is missing data in the series. This results in an inconsistent
graph, as follows:

The bottom series covers a hole left from the top series, which contradicts the stack
graph's overall percentage.

Combining scatter and area series
Highcharts also supports scatter charts that enable us to plot the data trend from a
large set of data samples. In here we are going to use scatter series differently which
makes our chart a bit like a poster chart.

First, we are going to use a subset of the 'Ages 0 to 14 ' data and set the series to
the scat ter type:

 name: 'Ages 0 to 14 ' ,
 type: ' scat ter ' ,
 data: [[1982, 23] , [1989, 19] ,
 [2007, 14] , [2004, 14] ,
 [1997, 15] , [2002, 14] ,
 [2009, 13] , [2010, 13]]

Chapter 3

[����]

Then we will enable the data labels for the scat ter series and make sure the marker
shape is always ' ci rcle ' , as follows:

 plotOpt ions: {
 scat ter : {
 marker: {
 symbol : ' ci rcle '
 },
 dataLabels: {
 enabled: t rue
 }
 }
 }

The preceding code snippet gives us the following graph:

Highcharts provides a list of marker symbols as well as allowing
users to supply their own marker icons (see Chapter 2, Highcharts
&RQÀJXUDWLRQV). The list of supported symbols contains circle,
square, diamond, t r iangle, and t r iangle-down.

Line, Area, and Scatter Charts

[100]

Polishing a chart with an artistic style
The next step is to format each scatter point into a bubble style with the radius
property and manually set the data label font size proportional to the percentage
value. Then use the vert icalAl ign property to adjust the labels to center inside the
enlarged scatter points. The various sizes of the scatter points require us to present
each data point with different attributes. Hence, we need to change the series data
GHÀQLWLRQ�LQWR�DQ�DUUD\�RI�SRLQW�REMHFW�FRQÀJXUDWLRQV��VXFK�DV�

 plotOpt ions: {
 scat ter : {
 marker: {
 symbol : ' ci rcle '
 },
 dataLabels: {
 enabled: t rue,
 ver t icalAl ign: 'middle '
 }
 }
 },
 data: [{
 dataLabels: {
 style: {
 fontSize: ' 25px '
 }
 },
 marker: { radius: 31 },
 y: 23,
 x: 1982
 }, {
 dataLabels: {
 style: {
 fontSize: ' 22px '
 }
 },
 marker: { radius: 23 },
 y: 19,
 x: 1989
 },

Chapter 3

[101]

The following screenshot shows a graph with a sequence of data points from a large
marker size and font, gradually becoming smaller according to their percentage values:

Now we have two issues with the preceding graph. Firstly, the scatter series color
(default second series color) clashes with the gray text label inside the markers
making it hard to read.

7R�UHVROYH�WKH�ÀUVW�LVVXH�ZH�ZLOO�FKDQJH�WKH�VFDWWHU�VHULHV�WR�D�OLJKWHU�FRORU�ZLWK�WKH�
following gradient setting:

 color : {
 l inearGradient : { x1: 0, y1: 0, x2: 0, y2: 1 },
 stops: [[0, ' #FF944D '] ,
 [1, ' #FFC299 ']]
 },

Then we give the scatter points a darker outline in plotOpt ions, as follows:

 plotOpt ions: {
 scat ter : {
 marker: {
 symbol : ' ci rcle ' ,
 l ineColor : ' #E65C00 ' ,
 l ineWidth: 1
 },

Line, Area, and Scatter Charts

[102]

Secondly, the data points are blocked by the end of the axes range. The issue can be
resolved by introducing extra padding spaces into both axes:

 yAxis: {
 ,
 maxPadding: 0.09
 },
 xAxis: {
 ,
 maxPadding: 0.02
 }

The following is the new outlook of the graph:

For the next part we will put up a logo and some decorative texts. There are two
ways to import an image into a chart—the plotBackgroundImage option or the
renderer . image API call. The plotBackgroundImage option brings the whole
image into the chart background which is not what we intend to do. The renderer .
image method offers more control on the location and the size of the image. The
following is the call after the chart is created:

 var chart = new Highcharts.Chart({
 . . .
 }) ;
 chart . renderer . image(' logo.png ' , 240, 10, 187, 92) .add() ;

Chapter 3

[103]

logo.png is the URL path for the ORJR�LPDJH�ÀOH��WKH�QH[W�WZR�SDUDPHWHUV�DUH�WKH�[�
and y positions (starting from 0, where 0 is the upper-left corner) of the chart where
the image will be displayed; the last two parameters are the width and height of the
LPDJH�ÀOH��7KH�image call basically returns an element object and the subsequent
.add call puts the returned image object into the renderer.

As for the decorative text, it is a red circle with white bold text in a different size.
7KH\�DUH�DOO�FUHDWHG�IURP�WKH�UHQGHUHU��,Q�WKH�IROORZLQJ�FRGH�VQLSSHW�WKH�ÀUVW�
renderer call is to create a red circle with x and y locations, and radius size. Then
immediately the SVG attributes with the at tr�PHWKRG�DUH�VHW��ZKLFK�FRQÀJXUHV�WKH�
transparency and outline in a darker color. The next three renderer calls are to create
text inside the red circle and the it is set up by using the css method for font size,
style, and color. We will revisit chart . renderer as part of the Highcharts API in
Chapter 7, Highcharts APIs.

 / / Red circle at the back
 chart . renderer .circle(220, 65, 45) .at t r({
 f i l l : ' #FF7575 ' ,
 ' f i l l -opaci ty ' : 0.6,
 stroke: ' #B24747 ' ,
 ' st roke-width ' : 1
 }) .add() ;
 / / Large percentage text wi th special font
 chart . renderer . text(' 37.5% ' , 182, 63) .css({
 fontWeight : ' bold ' ,
 color : #FFFFFF ' ,
 fontSize: ' 30px ' ,
 fontFami ly: ' palat ino '
 }) .add() ;
 / / Al ign subject in the circle
 chart . renderer . text(' 65 and over ' , 184, 82) .css({
 ' fontWeight ' : ' bold ' ,
 }) .add() ;
 chart . renderer . text(' by 2050 ' , 193, 96) .css({
 ' fontWeight ' : ' bold ' ,
 }) .add() ;

Finally, we move the legend box to the top of the chart. In order to locate the legend
inside the plot area, we need to set the f loat ing property to t rue which forces the
OHJHQG�LQWR�D�À[HG�OD\RXW�PRGH��7KHQ�ZH�UHPRYH�WKH�GHIDXOW�ERUGHU�OLQH�DQG�VHW�WKH�
legend items' list into a vertical direction:

 legend: {
 f loat ing: t rue,
 ver t icalAl ign: ' top ' ,
 al ign: ' center ' ,

Line, Area, and Scatter Charts

[104]

 x: 130,
 y: 40,
 borderWidth: 0,
 layout : ' ver t ical ' ,
 },

7KH�IROORZLQJ�LV�RXU�ÀQDO�JUDSK�ZLWK�WKH�GHFRUDWLRQV�

Summary
In this chapter we have explored the usage of line, area, and scatter charts. We can
VHH�KRZ�PXFK�ÁH[LELOLW\�+LJKFKDUWV�FDQ�RIIHU�WR�PDNH�D�SRVWHU�OLNH�FKDUW��,Q�WKH�
next chapter we will learn how to plot column and bar charts and learn about their
plotting options.

Bar and Column Charts
In this chapter we will start off by learning the column charts and their plotting
options. Then we will apply more advanced options for stacking and grouping
columns together. After that, we will move on to bar charts by following the same
example. Then we will learn how to polish up a bar chart and apply tricks to turn
a bar chart into mirror and horizontal gauge charts. Finally, a web page of multiple
charts will be put together as a concluding exercise. In this chapter we will cover
the following:

�� Introducing column charts
�� Stacking and grouping a column chart
�� Adjusting column colors and data labels
�� Introducing bar charts
�� Constructing a mirror chart
�� Converting a single bar chart into a horizontal gauge chart
�� Sticking the charts together

%DU�DQG�&ROXPQ�&KDUWV

[�����]

Introducing column charts
The difference between column and bar charts is trivial. The data in column charts
is aligned vertically whereas it is aligned horizontally in bar charts. Column and bar
charts are generally used for plotting data with categories along the x axis. In this
section we are going to demonstrate plotting column charts. The dataset we are going
WR�XVH�LV�RIIHUHG�E\�WKH�8�6��3DWHQW�DQG�7UDGHPDUN�2IÀFH��7KH�JUDSK�MXVW�DIWHU�WKH�
following code snippet shows a column chart for the number of patents granted to the
8QLWHG�.LQJGRP�IRU�WKH�ODVW����\HDUV��7KH�IROORZLQJ�LV�WKH�FKDUW�FRQÀJXUDWLRQ�FRGH�

 chart : {
 renderTo: ' container ' ,
 type: ' column ' ,
 borderWidth: 1
 },
 t i t le: {
 text : 'Number of Patents Granted ' ,
 },
 credi ts: {
 posi t ion: {
 al ign: ' lef t ' ,
 x: 20
 },
 href : ' ht tp: / /www.uspto.gov ' ,
 text : ' Source: U.S. Patent & Trademark Off ice '
 },
 xAxis: {
 categories: [
 ' 2001 ' , ' 2002 ' , ' 2003 ' , ' 2004 ' , ' 2005 ' ,
 ' 2006 ' , ' 2007 ' , ' 2008 ' , ' 2009 ' , ' 2010 ' ,
 ' 2011 ']
 },
 yAxis: {
 t i t le: {
 text : 'No. of Patents '
 }
 },
 plotOpt ions: {
 },
 ser ies: [{
 name: 'UK ' ,
 data: [4351, 4190, 4028, 3895, 3553,
 4323, 4029, 3834, 4009, 5038, 4924]
 }]

The following is the result that we get from the preceding code snippet:

Chapter 4

[107]

Data can be found from the online report $OO�3DWHQWV��$OO�7\SHV�
5HSRUW by Patent Technology Monitoring Team at ht tp: / /www .
uspto.gov/web/off ices/ac/ ido/oeip/ taf /apat .htm.

Let's add another series, France. The following chart shows both series aligned with
HDFK�RWKHU�VLGH�E\�VLGH�ÀQDOO\�

%DU�DQG�&ROXPQ�&KDUWV

[108]

Overlapped column chart
Another way to present multiseries columns is to overlap the columns. The main
reason for this type of presentation is to avoid columns becoming too thin and
overpacked if there are too many categories in the chart. As a result, LW�LV�GLIÀFXOW�
to observe the values and compare them. Overlapping the columns provides more
space between each category; hence each column can still retain the width.

We can make both series partially overlap each other with the padding options,
as follows:

 plotOpt ions: {
 ser ies: {
 pointPadding: -0.2,
 groupPadding: 0.3
 }
 },

The default setting for padding between columns (also for bars) is 0.2 which is a
fraction value of the width of each category. In this example we are going to set
pointPadding to a negative value, which means instead of having padding distance
between neighboring columns, we bring the columns together to overlap each other.
groupPadding is the distance of group values relative to each category width, that
is, the distance between the pair of UK and France columns in 2005 and 2006. In
this example, we have set it to 0.3 to make sure the columns don't automatically
become wider, because overlapping produces more spaces between each group. The
following is the screenshot of the overlapping columns:

Chapter 4

[�����]

Stacking and grouping a column chart
Instead of aligning columns side by side, we can stack the columns on top of each
other. Although this would make it slightly harder to visualize each column's values,
we can instantly observe the total values of each category and the change of ratios
between the series. Another powerful feature with stacked columns is to group
them selectively when we have more than a couple of series. This can give a sense of
proportions between multiple groups of stacked series.

Let's start a new column chart with the UK, Germany, Japan, and South Korea.

The number of patents granted for Japan has gone off the scale compared to other
countries. Let's group and stack the multiple series into Europe and Asia with the
IROORZLQJ�VHULHV�FRQÀJXUDWLRQ�

 plotOpt ions: {
 column: {
 stacking: ' normal '
 }
 },
 ser ies: [{
 name: 'UK ' ,
 data: [4351, 4190, 4028, ] ,
 stack: 'Europe '
 }, {

%DU�DQG�&ROXPQ�&KDUWV

[110]

 name: 'Germany ' ,
 data: [11894, 11957, 12140, . . .] ,
 stack: 'Europe '
 }, {
 name: ' S.Korea ' ,
 data: [3763, 4009, 4132, . . .] ,
 stack: 'Asia '
 }, {
 name: ' Japan ' ,
 data: [34890, 36339, 37248, . . .] ,
 stack: 'Asia '
 }]

We declare column stacking in plotOpt ions as ' normal ' and then for each
column series assign a stack group name, 'Europe ' and 'Asia ' , which produces
the following graph:

As we can see, the chart reduces four vertical bars into two and each column is
FRPSULVHG�RI�WZR�VHULHV��7KH�ÀUVW�YHUWLFDO�EDU�LV�WKH� 'Europe ' group and the second
one is 'Asia ' .

Chapter 4

[111]

Mixing the stacked and single columns
,Q�WKH�ODVW�VHFWLRQ�ZH�DFNQRZOHGJHG�WKH�EHQHÀW�RI�JURXSLQJ�DQG�VWDFNLQJ�PXOWLSOH�
series. There are also occasions when multiple series can belong to a group and there
are individual series in their own groups. Highcharts offers the ÁH[LELOLW\�WR�PL[�WKH�
stacked and grouped series with single series.

Let's look at an example of mixing a stacked column and single column together.
First remove the stack group assignment in each series; that is, the default action
for all the column series is to remain stacked together. Then we introduce a new
column series, US, and manually declare the stacking option as nul l in the series
FRQÀJXUDWLRQ�WR�RYHUULGH�WKH�GHIDXOW�plotOpt ions setting:

 plotOpt ions: {
 column: {
 stacking: ' normal '
 }
 },
 ser ies: [{
 name: 'UK ' ,
 data: [4351, 4190, 4028, ]
 }, {
 name: 'Germany ' ,
 data: [11894, 11957, 12140, . . .]
 }, {
 name: ' S.Korea ' ,
 data: [3763, 4009, 4132, . . .]
 }, {
 name: ' Japan ' ,
 data: [34890, 36339, 37248, . . .]
 }, {
 name: 'US ' ,
 data: [98655, 97125, 98590, . . .] ,
 stacking: nul l
 }]

%DU�DQG�&ROXPQ�&KDUWV

[112]

The new series array produces the following graph:

7KH�ÀUVW�IRXU�VHULHV³UK, Germany, S. Korea, and Japan—are stacked together as
a single column and US is displayed as a separate column. We can easily observe
by stacking the series together that the number of patents of the four countries put
together is less than two-thirds of the number of patents of the US (the US is nearly
25 times of the UK).

Comparing the columns in stacked percentages
Alternatively, we can see how each country compares by normalizing the values
into percentages and stacking them together. This can be achieved by removing the
manual stacking setting in the US series and setting the global column stacking
as ' percent ' :

 plotOpt ions: {
 column: {
 stacking: ' percent '
 }
 }

Chapter 4

[113]

All the series are put into a single column and their values are normalized into
percentages, as shown in the following screenshot:

Adjusting column colors and data labels
Let's make another chart, and this time we will plot the top ten countries with
patents granted. The following is the code to produce the chart:

 chart : {
 renderTo: ' container ' ,
 type: ' column ' ,
 borderWidth: 1
 },
 t i t le: {
 text : 'Number of Patents Fi led in 2011 '
 },
 credi ts: { . . . },
 xAxis: {
 categories: [
 'Uni ted States ' , ' Japan ' ,
 ' South Korea ' , 'Germany ' , 'Taiwan ' ,
 'Canada ' , 'France ' , 'Uni ted Kingdom ' ,
 'China ' , ' I taly ']
 },
 yAxis: {

%DU�DQG�&ROXPQ�&KDUWV

[114]

 t i t le: {
 text : 'No. of Patents '
 }
 },
 ser ies: [{
 showInLegend: false,
 data: [121261, 48256, 13239, 12968, 9907,
 5754, 5022, 4924, 3786, 2333]
 }]

The preceding code snippet generates the following graph:

There are several areas that we would like to change in the preceding graph. First
there are word wraps in the country names. In order to avoid that we can apply
rotation on the x-axis labels, as follows:

 xAxis: {
 categories: [
 'Uni ted States ' , ' Japan ' ,
 ' South Korea ' , . . .] ,
 labels: {
 rotat ion: -45,
 al ign: ' r ight '
 }
 },

Chapter 4

[115]

Secondly, the large value from 'Uni ted States ' has gone off the scale compared to
values from other countries, so we cannot really identify their values. To resolve this
issue we can apply a logarithmic scale onto the y axis, as follows:

 yAxis: {
 t i t le: . . . ,
 type: ' logari thmic '
 },

Finally, we would like to print the value labels along the columns and decorate the
chart with different colors for each column, as follows:

 plotOpt ions: {
 column: {
 colorByPoint : t rue,
 dataLabels: {
 enabled: t rue,
 rotat ion: -90,
 y: 25,
 color : ' #F4F4F4 ' ,
 format ter : funct ion() {
 return
 Highcharts.numberFormat(this.y, 0) ;
 },
 x: 10,
 style: {
 fontWeight : ' bold '
 }
 }
 }
 },

%DU�DQG�&ROXPQ�&KDUWV

[�����]

The following is the graph showing all the improvements:

Introducing bar charts
In Highcharts there are two ways to specify bar charts—setting series' type to ' bar '
or setting the chart . inverted option to t rue with column series (also true for
switching from bar to column). Switching between column and bar is simply a case
of swapping the display orientation between the y and x axes; all the label rotations
DUH�VWLOO�LQWDFW��0RUHRYHU��WKH�DFWXDO�FRQÀJXUDWLRQV�VWLOO�UHPDLQ�LQ�WKH�[�DQG�\�D[HV��
To demonstrate this we will use the previous example along with the inverted
option set to t rue, as follows:

 chart : {
 ,
 type: ' column ' ,
 inverted: t rue
 },

Chapter 4

[117]

The preceding code snippet produces a bar graph, as follows:

The rotation of the country name and the logarithmic axis labels still remain the
same. In fact, now the value labels are muddled together and the category names are
not aligning properly to the bars. The next step is to reset the label orientations to
restore the graph to a readable form; we will simply swap the label setting from the y
axis to the x axis:

 xAxis: {
 categories: ['Uni ted States ' ,
 ' Japan ' , ' South Korea ' , . . .]
 },
 yAxis: {
 ,
 labels: {
 rotat ion: -45,
 al ign: ' r ight '
 }
 },

Then we will reset the default column dataLabel settings by removing the rotation
option and re-adjusting the x and y positioning to align inside the bars:

 plotOpt ions: {
 column: {
 ,
 dataLabels: {

%DU�DQG�&ROXPQ�&KDUWV

[118]

 enabled: t rue,
 color : ' #F4F4F4 ' ,
 x: -40,
 y: 5,
 format ter :
 style: . . .
 }
 }

7KH�IROORZLQJ�LV�WKH�JUDSK�ZLWK�À[HG�GDWD�ODEHOV�

Giving the bar chart a simpler look
Here we are going to strip the axes back for a minimal, bare presentation. We remove
the whole y axis and adjust the category name above the bar. To strip off the y axis
we will use the following code snippet:

 yAxis: {
 t i t le: {
 text : nul l
 },
 labels: {
 enabled: false
 },
 gr idLineWidth: 0,
 type: ' logari thmic '
 },

Chapter 4

[�����]

Then we move the country labels above the bars. This is accompanied by removing
the axis line and the interval tick line, then change the label alignments and their x
and y positioning:

 xAxis: {
 categories: ['Uni ted States ' , ' Japan ' ,
 ' South Korea ' , . . .] ,
 l ineWidth: 0,
 t ickLength: 0,
 labels: {
 al ign: ' lef t ' ,
 x: 0,
 y: -13,
 style: {
 fontWeight : ' bold '
 }
 }
 },

Since we changed the label alignments to go above the bars, the horizontal position
of the bars (plot area) has shifted to the left-hand side of the chart to take over the
old label positions. Therefore we need to increase the spacing on the left to avoid the
chart looking too packed. Finally, we add a background image to the plot area just to
ÀOO�XS�WKH�HPSW\�VSDFHV��DV�IROORZV�

 chart : {
 renderTo: ' container ' ,
 type: ' column ' ,
 spacingLeft : 20,
 plotBackgroundImage: ' chartBg.png ' ,
 inverted: t rue
 },
 t i t le: {
 text : nul l
 },

%DU�DQG�&ROXPQ�&KDUWV

[120]

The following screenshot shows the new simple look of our bar chart:

Constructing a mirror chart
Using a mirror chart is another way of comparing two column series. Instead of
aligning the two series as columns adjacent to each other, mirror charts align them in
bars opposite to each other. Sometimes this is used as a preferred way for presenting
the trend between the two series.

In Highcharts we can make use of a stacked bar chart and change it slightly into a
mirror chart for comparing two sets of data horizontally side by side. To do that
let's start with a new data series from Patents Granted, which shows the comparison
between the United Kingdom and China with respect to the number of patents
granted for the past decade.

Chapter 4

[121]

7KH�ZD\�ZH�FRQÀJXUH�WKH�FKDUW�LV�UHDOO\�D�FROXPQ�VWDFNHG�EDU�FKDUW��ZLWK�RQH�VHW�RI�
data being positive and another set being manually converted to negative values,
such that the zero value axis is in the middle of the chart. Then we invert the column
chart into a bar chart and label the negative range as positive. To demonstrate this
FRQFHSW�OHW
V�FUHDWH�D�VWDFNHG�FROXPQ�FKDUW�ÀUVW�ZLWK�ERWK�SRVLWLYH�DQG�VHOI�PDGH�
negative ranges, as follows:

 chart : {
 renderTo: ' container ' ,
 type: ' column ' ,
 borderWidth: 1
 },
 t i t le: {
 text : 'Number of Patents Granted ' ,
 },
 credi ts: { . . . },
 xAxis: {
 categories: [' 2001 ' , ' 2002 ' , ' 2003 ' , . . .] ,
 },
 yAxis: {
 t i t le: {
 text : 'No. of Patents '
 }
 },
 plotOpt ions: {
 ser ies: {
 stacking: ' normal '
 }
 },
 ser ies: [{
 name: 'UK ' ,
 data: [4351, 4190, 4028, . . .]
 }, {
 name: 'China ' ,
 data: [-265, -391, -424, . . .]
 }]

%DU�DQG�&ROXPQ�&KDUWV

[122]

The following screenshot shows the stacked-column chart with the zero value in the
middle of the y axis:

7KHQ�ZH�FKDQJH�WKH�FRQÀJXUDWLRQ�LQWR�D�EDU�FKDUW�ZLWK�two x axes showing on each
VLGH�ZLWK�WKH�VDPH�UDQJH��7KH�ODVW�VWHS�LV�WR�GHÀQH�WKH�\�D[LV�ODEHO
V�format ter
function to turn the negative labels into positive ones, as follows:

 chart : {
 ,
 type: ' bar ' ,
 },
 xAxis: [{
 categories: [' 2001 ' , ' 2002 ' , ' 2003 ' , . . .] ,
 }, {
 categories: [' 2001 ' , ' 2002 ' , ' 2003 ' , . . .] ,
 opposi te: t rue,
 l inkedTo: 0,
 }] ,
 yAxis: {
 ,

Chapter 4

[123]

 labels: {
 format ter : funct ion() {
 return
 Highcharts.numberFormat(Math.abs(this.value) , 0) ;
 }
 }
 },

7KH�IROORZLQJ�LV�WKH�ÀQDO�EDU�FKDUW�IRU�FRPSDULQJ�WKH�number of patents granted
between the UK and China for the past decade:

%DU�DQG�&ROXPQ�&KDUWV

[124]

Extending to a stacked mirror chart
We can also apply the same principle from the column example to stacked and
grouped series charts. Instead of having two groups of stacked columns displayed
next to each other, we can have all the series stacked together with zero value to
divide both groups. The following screenshot demonstrates the comparison between
the European and Asian stacked groups in a bar chart:

The South Korean and Japanese series are stacked together on the left-hand side (the
negative side), whereas the UK and Germany are grouped on the right-hand side
(the positive side). The only tricky bit to producing the preceding graph is how to
output the data labels.

First of all, the South Korean and Japanese series data is manually set to negative
values. Secondly, since South Korea and the UK are both the outer series of their own
group, we enable the data label for these series. The following code snippet shows
WKH�VHULHV�DUUD\�FRQÀJXUDWLRQ�

 ser ies: [{
 name: 'UK ' ,
 data: [4351, 4190, 4028, . . .] ,
 dataLabels : {

Chapter 4

[125]

 enabled: t rue,
 backgroundColor : ' #FFFFFF ' ,
 x: 40,
 format ter : funct ion() {
 return
 Highcharts.numberFormat(Math.abs(this. total) , 0) ;
 },
 style: {
 fontWeight : ' bold '
 }
 }
 }, {
 name: 'Germany ' ,
 data: [11894, 11957, 12140, . . .] ,
 }, {
 name: ' S.Korea ' ,
 data: [-3763, -4009, -4132, . . .] ,
 dataLabels : {
 enabled: t rue,
 x: -48,
 backgroundColor : ' #FFFFFF ' ,
 format ter : funct ion() {
 return
 Highcharts.numberFormat(Math.abs(this. total) , 0) ;
 },
 style: {
 fontWeight : ' bold '
 }
 }
 }, {
 name: ' Japan ' ,
 data: [-34890, -36339, -37248, . . .] ,
 }]

1RWH�WKDW�WKH�GHÀQLWLRQ�IRU�WKH�format ter function is using this. total and not
this.y, because we are using the position of the outer series to print the group's
total value. The white background settings for the data labels are to avoid the
interfering of the y-axis interval lines.

%DU�DQG�&ROXPQ�&KDUWV

[�����]

Converting a single bar chart into a
horizontal gauge chart
A horizontal gauge chart is generally used as an indicator for the current threshold
OHYHO��PHDQLQJ�WKH�H[WUHPH�YDOXHV�LQ�WKH�\�D[LV�DUH�À[HG��$QRWKHU�characteristic is the
single value (one dimension) in the x axis which is the current time.

Next we are going to learn how to turn a chart with a single bar into a gauge-level
chart. The basic idea is to diminish the plot area to the same size as the bar. This
PHDQV�ZH�KDYH�WR�À[�WKH�VL]H�RI�ERWK�WKH�SORW�DUHD�DQG�WKH�EDU��GLVUHJDUGLQJ�WKH�
dimension of the container. To do that we set chart .width and chart .height to
some values. Then we decorate the plot area with a border and background color for
making it resemble a container for the gauge:

 chart : {
 renderTo: ' container ' ,
 type: ' bar ' ,
 plotBorderWidth: 2,
 plotBackgroundColor : ' #D6D6EB ' ,
 plotBorderColor : ' #D8D8D8 ' ,
 plotShadow: t rue,
 spacingBot tom: 43,
 width: 350,
 height : 120
 },

We then switch off the y-axis title and set up a regular interval within the percentage,
as follows:

 xAxis: {
 categories: ['US '] ,
 t ickLength: 0
 },
 yAxis: {
 t i t le: {
 text : nul l
 },
 labels: {
 y: 20
 },
 min: 0,
 max: 100,
 t ickInterval : 20,
 minorTickInterval : 10,

Chapter 4

[127]

 t ickWidth: 1,
 t ickLength: 8,
 minorTickLength: 5,
 minorTickWidth: 1,
 minorGr idLineWidth: 0
 },

7KH�ÀQDO�SDUW�LV�WR�FRQÀJXUH�WKH�EDU�VHULHV��VR�WKDW�WKH�EDU�ZLGWK�ÀWV�SHUIHFWO\�ZLWKLQ�
WKH�SORW�DUHD��7KH�UHVW�RI�WKH�VHULHV�FRQÀJXUDWLRQ�LV�WR�EUXVK�XS�WKH�EDU�ZLWK�DQ�69*�
gradient effect, as follows:

 ser ies: [{
 borderColor : ' #7070B8 ' ,
 borderRadius: 3,
 borderWidth: 1,
 color : {
 l inearGradient :
 { x1: 0, y1: 0, x2: 1, y2: 0 },
 stops: [
 [0, ' #D6D6EB '] ,
 [0.3, ' #5C5CAD '] ,
 [0.45, ' #5C5C9C '] ,
 [0.55, ' #5C5C9C '] ,
 [0.7, ' #5C5CAD '] ,
 [1, ' #D6D6EB ']]
 },
 pointWidth: 50,
 data: [48.9]
 }]

The multiple of stop gradients are supported by SVG, but not
by VML. For VML browsers, such as Internet Explorer 8, the
number of stop gradients should be restricted to two.

7KH�IROORZLQJ�LV�WKH�ÀQDO�SROLVKHG�ORRN�RI�WKH�gauge chart:

%DU�DQG�&ROXPQ�&KDUWV

[128]

Sticking the charts together
In this section we are building a page with a mixture of charts. The main chart is
displayed on the left-hand side panel and three mini charts are displayed on the
right-hand side panel in top-down order. The layout is achieved by HTML div
boxes and CSS styles.

The left-hand side chart is from the multicolored column chart example that we
discussed previously. All the axes lines and labels are disabled in the mini charts.

7KH�ÀUVW�PLQL�FKDUW�IURP�WKH�WRS�LV�D�WZR�VHULHV�OLQH�FKDUW�ZLWK�dataLabels enabled
only for the last point in each series, that is, the last point in the data array is a data
object instead. The label color is set to the same color as its series. Then plotLine is
inserted into the y axis at the 50 percent value mark. The following is a sample of one
RI�WKH�VHULHV�FRQÀJXUDWLRQV�

 pointStar t : 2001,
 marker: {
 enabled: false
 },
 data: [53.6, 52.7, 52.7, 51.9, 52.4,
 52.1, 51.2, 49.7, 49.5, 49.6,
 { y: 48.9,
 name: 'US ' ,
 dataLabels: {
 color : ' #4572A7 ' ,
 enabled: t rue,
 x: -10,
 y: 14,
 format ter : funct ion() {
 return
 this.point .name + ": " + this.y + '% ' ;
 }
 }
 }]

The second mini chart is a simple bar with data labels outside the categories. The
style for the data label is set to a larger, bold font.

Chapter 4

[�����]

The last mini chart is basically a scatter chart with each series having a single point,
so that each series can appear in the right-hand side legend. Moreover, we set the
x value for each series to zero, so that we can have different sizes of data points as
well, and stacked on top of each other. The following is an example for one of the
VFDWWHU�VHULHV�FRQÀJXUDWLRQV�

 zIndex: 1,
 legendIndex: 0,
 color : {
 l inearGradient :
 { x1: 0, y1: 0, x2: 0, y2: 1 },
 stops: [[0, ' #FF6600 '] ,
 [0.6, ' #FFB280 ']]
 },
 name: 'America - 49% ' ,
 marker: {
 symbol : ' ci rcle ' ,
 l ineColor : ' #B24700 ' ,
 l ineWidth: 1
 },
 data: [
 { x: 0, y: 49, name: 'America ' ,
 marker: { radius: 74 }
 }]

The following is the screenshot of these multiple charts displayed next to each other:

%DU�DQG�&ROXPQ�&KDUWV

[130]

Summary
In this chapter we have learned how to use both column and bar charts. We utilized
their options to achieve various presentations of columns and bars for the ease of
FRPSDULVRQ�EHWZHHQ�GDWD��:H�DOVR�DGYDQFHG�WKH�FRQÀJXUDWLRQV�IRU�GLIIHUHQW�FKDUW�
appearances such as mirror and horizontal gauge charts. In the next chapter we will
explore the pie chart series.

Pie Charts
In this chapter, we will learn how to plot pie charts and explore their various options.
We will then examine how to put multiple pies inside a chart. After that we will
ÀQG�RXW�KRZ�WR�FUHDWH�D�GRQXW�FKDUW��:H�WKHQ�HQG�WKH�FKDSWHU�E\�VNHWFKLQJ�D�FKDUW�
containing all the series types that we have learned so far—column, line, and pie
series types. In this chapter, we will be covering the following topics:

�� Understanding the relationship of chart, pie, and series
�� Plotting simple pie charts—single series
�� Plotting multiple pies in a chart—multiple series
�� Preparing a donut chart—multiple series
�� Building a chart with multiple series types

8QGHUVWDQGLQJ�WKH�UHODWLRQVKLS�RI�FKDUW��
SLH��DQG�VHULHV
3LH�FKDUWV�DUH�VLPSOH�WR�SORW��WKH\�KDYH�QR�D[HV�WR�FRQÀJXUH�DQG�DOO�WKH\�QHHG�LV�GDWD�
with categories. Generally, the term pie chart refers to a chart with a single pie series.
In Highcharts, a chart can handle multiple pie series. In this case, a chart can display
more than one pie; each pie associates with a series of data. Instead of showing
multiple pies, Highcharts can display a donut chart that is basically a pie chart with
multiple concentric rings lying on top of each other. Each concentric ring is a pie
VHULHV��VLPLODU�WR�D�VWDFNHG�SLH�FKDUW��:H�ZLOO�ÀUVW�OHDUQ�KRZ�WR�SORW�D�FKDUW�ZLWK�D�
single pie, and then later on in the chapter, we will explore the plotting with multiple
pie series in separate pies and a donut chart.

Pie Charts

[132]

Plotting simple pie charts – single series
In this chapter, we are going to use video gaming data supplied by vgchartz (www.
vgchartz.com���7KH�IROORZLQJ�LV�WKH�SLH�FKDUW�FRQÀJXUDWLRQ�DQG�WKH�GDWD�LV�WKH�QXPEHU�
of games sold in 2011 according to the publishers, based on the top 100 games sold.
Wii Sports is taken out of the dataset because it is free with the Wii console.

 chart : {
 renderTo: ' container ' ,
 type: ' pie ' ,
 borderWidth: 1
 },
 t i t le: {
 text : 'Number of Software Games Sold in 2011 Grouped by
Publ ishers ' ,
 },
 credi ts: {
 . . .
 },
 ser ies: [{
 data: [['Nintendo ' , 54030288] ,
 ['Electronic Ar ts ' , 31367739] ,
 . . .]
 }]

+HUH�LV�D�VLPSOH�SLH�FKDUW�VFUHHQVKRW�ZLWK�WKH�ÀUVW�data point (Nintendo) starting
from the 12 o'clock position. 7KH�ÀUVW�VOLFH�DOZD\V�VWDUWV�IURP����R
FORFN�SRVLWLRQ�
and this cannot be changed.

Chapter 5

[133]

&RQ¿JXULQJ�WKH�SLH�ZLWK�VOLFHG�RII�VHFWLRQV
We can improve the previous pie chart to include values in the labels and word wrap
VRPH�RI�WKH�ORQJ�QDPHV�RI�WKH�SXEOLVKHU��,QVWHDG�RI�UHGHÀQLQJ�WKH�dataLabels.
format ter�RSWLRQ��ZH�ZLOO�SUHGHÀQH�D�PHWKRG��formatWi thLineBreaks and use it
inside the format ter option because we will reuse this method in other examples:

 funct ion formatWi thLineBreaks(str) {
 var words = str .spl i t (' ') ;
 var l ines = [] ;
 var l ine = ' ' ;

 $.each(words, funct ion(idx, word) {
 i f (l ine. length + word. length > 25) {
 l ines.push(l ine);
 l ine = ' ' ;
 }
 l ine += word + ' ' ;
 }) ;
 l ines.push(l ine);
 return l ines. join('
 ') ;

 }

7KH�IROORZLQJ�LV�WKH�FRQÀJXUDWLRQ�FRGH�IRU�WKH�SLH�VHULHV��al lowPointSelect
allows the users to interact with the chart by clicking on the data points. As for the
pie series, this is used for slicing off a section of the pie chart (see the following
screenshot). The sl icedOffset option is to adjust how far the section is sliced off
from the pie chart.

 plotOpt ions: {
 pie: {
 sl icedOffset : 20,
 al lowPointSelect : t rue,
 dataLabels: {
 format ter : funct ion() {
 var str = this.point .name + ' : ' +
 Highcharts.numberFormat(this.y, 0) ;
 return formatWi thLineBreaks(str) ;
 }
 }
 }
 },

Pie Charts

[134]

Additionally, we would like to slice off the largest section in the initial display; its
label is shown in bold type font. To do that, we will need to change the largest data
SRLQW�LQWR�REMHFW�FRQÀJXUDWLRQ�DV�VKRZQ�LQ�WKH�IROORZLQJ�VFUHHQVKRW��7KHQ�ZH�SXW�WKH�
sl iced property into the object and change from the default, false, to t rue, which
forces the slice to part from the center. Furthermore, we set the dataLabels with the
assignment of the fontWeight option to overwrite the default settings:

 ser ies: [{
 data: [{
 name: 'Nintendo ' ,
 y: 54030288,
 sl iced: t rue,
 dataLabels: {
 style: {
 fontWeight : ' bold '
 }
 }
 }, ['Electronic Ar ts ' , 31367739] ,
 ['Act ivision ' , 30230170] , ]
 }]

7KH�IROORZLQJ�LV�WKH�FKDUW�ZLWK�WKH�UHÀQHG�labels:

Chapter 5

[135]

As mentioned before, the sl icedOffset option has also pushed the sliced off section
further than the default distance, which is 10 pixels. The sl icedOffset applies
to all the sliced off sections, which means that we cannot control the distance of
individually parted sections. It is also worth noticing that the connectors (the lines
between the slice and the data label) become crooked as a result of that. In the
next example, we demonstrate that the sl iced property can be applied to as many
data points as we want and remove the sl icedOffset option to resume the default
settings to show the difference. The following chart illustrates this with three parted
slices by repeating the data object settings (Nintendo) to two other points:

Notice that the connectors resume back to being smooth lines. However, there is
another interesting behavior for the sl iced option. For those slices with sl iced as
the default setting (false), only one of them can be sliced off. For instance, the user
clicks on the Others section and it moves away from the chart. Then clicking on the
Activision will slice off the section and the Others section moves back towards the
FHQWHU��ZKHUHDV�WKH�WKUHH�FRQÀJXUHG�sl iced: t rue sections maintain their parted
positions. In other words, with the sl iced option set to t rue, this enables its state to
be independent of others with the false setting.

Pie Charts

[�����]

Applying a legend to a pie chart
So far the chart contains large numbers; it is confusing to really comprehend how
much larger one section is than the other. We can print all the labels in percentages.
Let's put all the publisher names inside a legend box and the percentage values
printed inside each slice.

7KH�SORWWLQJ�FRQÀJXUDWLRQ�LV�UHGHÀQHG�DV�IROORZV��7R�HQDEOH�WKH�legend box, we set
showInLegend to t rue. Then we set the data labels' font color and style to bold and
white respectively, and change the format ter function slightly to use the this.
percentage variable that is only available for the pie series. The distance option is
the distance between the data label and the outer edge of the pie. A positive value
will shift the data label outside of the edge and a negative value will do the same in
the opposite direction.

 plotOpt ions: {
 pie: {
 showInLegend: t rue,
 dataLabels: {
 distance: -24,
 color : 'whi te ' ,
 style: {
 fontWeight : ' bold '
 },
 format ter : funct ion() {
 return Highcharts.numberFormat(this.percentage) + '% ' ;
 }
 }
 }
 },

Then for the legend box, we add in some padding as there are more than a few
legend items, and set the legend box closer to the pie, as follows:

 legend: {
 al ign: ' r ight ' ,
 layout : ' ver t ical ' ,
 ver t icalAl ign: 'middle ' ,
 i temMarginBot tom: 4,
 i temMarginTop: 4,
 x: -40
 },

Chapter 5

[137]

The following is another presentation of the chart:

Plotting multiple pies in a
chart – multiple series
With pie charts, we can do something more informative by displaying another pie
chart side by side for the comparison of data. This can be done by simply specifying
WZR�VHULHV�FRQÀJXUDWLRQV�LQ�WKH�VHULHV�DUUD\��

We continue to use the previous example for the chart on the left-hand side and we
create a new category series from the same dataset, but grouped by platforms this
WLPH��7KH�IROORZLQJ�LV�WKH�VHULHV�FRQÀJXUDWLRQ�IRU�GRLQJ�VR�

 ser ies: [{
 center : [' 25% ' , ' 50% '] ,
 data: [['Nintendo ' , 54030288] ,
 ['Electronic Ar ts ' , 31367739] ,
 ]
 }, {
 center : [' 75% ' , ' 50% '] ,
 dataLabels: {

Pie Charts

[138]

 format ter : funct ion() {
 var str = this.point .name + ' : ' +
Highcharts.numberFormat(this.percentage, 0) + '% ' ;
 return formatWi thLineBreaks(str) ;
 }
 },
 data: [['Xbox ' , 80627548] ,
 ['PS3 ' , 64788830] ,
 . . .]]
 }]

As we can see, we use a new option, center, to position the pie chart. The option
FRQWDLQV�DQ�DUUD\�RI�WZR�SHUFHQWDJH�YDOXHV³�WKH�ÀUVW�LV�WKH�UDWLR�RI�WKH��[��SRVLWLRQ�
to the whole container width, whereas the second percentage value is the "y" ratio.
The default value is [' 50% ' , ' 50% '], which is in the middle of the container. In this
H[DPSOH��ZH�VSHFLI\�WKH�ÀUVW�SHUFHQWDJH�YDOXHV�WR� ' 25% ' and ' 75% ' , which are in the
middle of the left- and the right-hand side halves respectively.

In the second series, we will choose to display the pie chart with percentage
data labels instead of unit values. The following is the screenshot of a chart with
double pies:

On the surface, this is not much different to plotting two separate pie charts in an
individual <div>�WDJ��DSDUW�IURP�VKDULQJ�WKH�VDPH�WLWOH��7KH�PDLQ�EHQHÀW�LV�WKDW�ZH�
can combine different series type presentations under the same chart. For instance,
we want to present the distribution in ratio in pie series directly above each group
of multiple column series. We will learn how to do this later in the chapter.

Chapter 5

[�����]

Preparing a donut chart – multiple series
Highcharts offers another type of pie chart—a donut chart. It has the drill-down
effect on a category into sub-categories and is a convenient way of viewing data in
greater detail. This drill-down effect can be applied on multiple levels. In this section,
we will create a simple donut chart that has an outer ring of subcategories (game
titles) that align with the inner categories (publishers).

For the sake of simplicity, we only use the top three game publishers for the inner pie
FKDUW��7KH�IROORZLQJ�LV�WKH�VHULHV�DUUD\�FRQÀJXUDWLRQ�IRU�WKH�GRQXW�FKDUW�

 ser ies: [{
 name: 'Publ ishers ' ,
 dataLabels : {
 distance: -70,
 color : 'whi te ' ,
 format ter : funct ion() {
 return this.point .name + ' :
 ' +
 Highcharts.numberFormat(this.y / 1000000, 2) ;
 },
 style: {
 fontWeight : ' bold '
 }
 },
 data: [['Nintendo ' , 54030288] , ['Electronic Ar ts ' ,
31367739] ,
 ['Act ivision ' , 30230170]]
 }, {
 name: 'Ti t les ' ,
 innerSize: ' 60% ' ,
 dataLabels: {
 format ter : funct ion() {
 var str = ' ' + this.point .name ' : ' + Highcharts.
numberFormat(this.y / 1000000, 2) ;
 return formatWi thLineBreaks(str) ;
 }
 },
 data: [/ / Nintendo
 { name: 'Pokemon B&W ' , y: 8541422,
 color : colorBr ightness("#4572A7",
 0.05) },
 { name: 'Mario Kart ' , y: 5349103,
 color : colorBr ightness(' #4572A7 ' ,
 0.1) },

 / / EA
 { name: 'Bat t lef ield 3 ' , y: 11178806,
 color : colorBr ightness(' #AA4643 ' ,

Pie Charts

[140]

 0.05) },

 / / Act ivision
 { name: 'COD: Modern Warfare 3 ' ,
 y: 23981182,
 color : colorBr ightness(' #89A54E ' ,
 0.1) },

 }]
 }]

First, we have two series—the inner pie series, or the Publishers, and the outer ring
series, or the Titles. The Titles series has all the subcategories data together and it
aligns with the Publisher series. The order is such that the values of the subcategories
for the Nintendo category are before the subcategory data of Electronic Arts and so
on (see the order of data array in the Title series).

Each data point in the subcategories series is declared as a data point object for
assigning the color in similar range to their main category. This can be achieved by
IROORZLQJ�WKH�+LJKFKDUWV�GHPR�WR�ÀGGOH�ZLWK�WKH�FRORU�EULJKWQHVV�

color : Highcharts.Color(color) .br ighten(brightness) .get()

Basically, what this does is to use the main category color value to create a Color
object and then adjust the color code with the brightness parameter. This parameter
is derived from the ratio of the subcategory value. We rewrite this example into a
function known as colorBr ightness��DQG�FDOO�LW�LQ�WKH�FKDUW�FRQÀJXUDWLRQ��

 funct ion colorBr ightness(color , br ightness) {
 return
 Highcharts.Color(color) .br ighten(brightness) .get() ;
 }

The next part is to specify which series goes to the inner pie and which goes to the
outer ring. The innerSize option is used by the outer series, Title, to create an inner
circle. As a result, the Title series forms a donut/concentric ring. The value for the
innerSize option can be either in pixels or percentage values of the plot area size.

7KH�ÀQDO�SDUW�LV�WR�GHFRUDWH�WKH�FKDUW�ZLWK�GDWD�ODEHOV��2EYLRXVO\�ZH�ZDQW�WR�SRVLWLRQ�
the data labels of the inner charts to be over the inner pie, so that we assign a
negative value to the dataLabels.distance option. Instead of printing long values,
ZH�GHÀQH�WKH�format ter to convert them into units of millions.

Chapter 5

[141]

The following is the display of the donut chart:

Note that it is not mandatory to put a pie chart in the center of a donut chart. It is
just the presentation style of this example. We can have multiple concentric rings
instead. The following chart is exactly the same example as mentioned earlier, with
an addition of the innerSize option in the inner series of publishers:

Pie Charts

[142]

We can even further complicate the donut chart by introducing a third series. We
plot the following chart with three layers. The code is simply extended from the
example with another series and includes more data. The source code and the demo
are available at ht tp: / / joekuan.org/Learning_Highcharts/Chapter_5/ . The two
outer series use the innerSize option. As the inner pie will become even smaller and
will not have enough space for the labels, we therefore enable the legend box for the
most inner series with the showInLegend option.

%XLOGLQJ�D�FKDUW�ZLWK�PXOWLSOH�
series types
So far we have learned about the line, columns, and pie series types. It's time to
bring all these different series presentations into a single chart. In this section, we
use the annual data from 2008 through 2011 to plot three different kinds of series
type—column, line, and pie. The column type represents the yearly number of
games sold for each type of gaming console. The pie series shows the annual
number of gaming consoles sold for each vendor. The last one is the spline
series type that discloses how many new game titles there are in total for all the
consoles released each year.

Chapter 5

[143]

In order to enforce the whole graph to use the same color scheme for each type of
gaming console, we have to manually assign a color code for each data point in the
pie charts and the columns series:

 var wi iColor = ' #BBBBBB ' ;
 var x360Color = ' #89A54E ' ;
 var ps3Color = ' #4572A7 ' ;
 var spl ineColor = ' #FF66CC ' ;

We then decorate the chart in a more funky way. First, we give the chart a dark
background with a color gradient:

 var chart = new Highcharts.Chart({
 chart : {
 renderTo: ' container ' ,
 borderWidth: 1,
 spacingTop: 40,
 backgroundColor : {
 l inearGradient : { x1: 0, y1: 0,
 x2: 0, y2: 1 },
 stops: [[0, ' #0A0A0A '] ,
 [1, ' #303030 ']]
 }
 },

Then we need to shift the columns to the right-hand side, so that we have enough
room for an image (described later) that we are going to put at the top left-hand
side corner.

 xAxis: {
 minPadding: 0.2,
 t ickInterval : 1,
 labels: {
 format ter : funct ion() {
 return this.value;
 },
 style: {
 color : ' #CFCFCF '
 }
 }
 }

The next task is to make enough space for the pie charts to locate them above the
columns. This can be accomplished by introducing the maxPadding option on
both y axes.

 yAxis: [{
 t i t le: {
 text : 'Number of games sold ' ,

Pie Charts

[144]

 al ign: ' low ' ,
 style: {
 color : ' #CFCFCF '
 }
 },
 labels: {
 style: {
 color : ' #CFCFCF '
 }
 },
 maxPadding: 0.5
 }, {
 t i t le: {
 text : 'Number of games released ' ,
 style: {
 color : spl ineColor
 }
 },
 labels: {
 style: {
 color : spl ineColor
 }
 },
 maxPadding: 0.5,
 opposi te: t rue
 }] ,

Each pie series is displayed separately and aligned at the top of the columns, as well
as in the year category. This is done by adjusting the pie chart's center option in
the series array. We also want to reduce the display size for the pie series, as there
are other types of series to share within the chart. We will use the size option and
set the value in percentages. The percentage value is the diameter of the pie series
comparing the size of plot area:

 ser ies:[{
 type: ' pie ' ,
 name: 'Hardware 2011 ' ,
 size: ' 25% ' ,
 center : [' 88% ' , ' 20% '] ,
 data: [{ name: 'PS3 ' , y: 14128407,
 color : ps3Color },
 { name: 'X360 ' , y: 13808365,
 color : x360Color },
 { name: 'Wi i ' , y: 11567105,
 color : wi iColor }] ,

Chapter 5

[145]

7KH�VSOLQH�VHULHV�LV�GHÀQHG�WR�FRUUHVSRQG�WR�WKH�RSSRVLWH�\�D[LV��7R�PDNH�WKH�VHULHV�
clearly associated with the second axis, we apply the same color scheme for the line,
axis title, and labels:

 { name: "Game released",
 type: ' spl ine ' ,
 showInLegend: false,
 l ineWidth: 3,
 yAxis: 1,
 color : spl ineColor ,
 pointStar t : 2008,
 pointInterval : 1,
 data: [1170, 2076, 1551, 1378]
 },

We use the renderer . image method to insert the image to the chart and make sure
that the image has a higher zIndex, so that the axis line does not lie at the top of the
image. Instead of including a PNG image, we use an SVG image. This way the image
stays sharp and avoids the pixelation effect when the chart is resized.

 chart . renderer . image(' . /pacman.svg ' , 0,
 0, 200, 200) .at t r({
 ' zIndex ' : 10
 }) .add() ;

7KH�IROORZLQJ�LV�WKH�ÀQDO�ORRN�RI�WKH�JUDSK�ZLWK�3DF�0DQ�SVG image to give a
gaming theme to the chart:

Pie Charts

[�����]

Summary
In this chapter, we have learned how to outline a pie chart and its variant, the donut
chart. We also summarized this chapter by sketching a chart that includes all the
series types we have learned so far.

In the next chapter, we will explore the newer series types in Highcharts such as
gauge, radar, and range series. We will also learn how to apply radial gradient
in Highcharts.

Gauge, Polar, and
Range Charts

In this chapter we will learn how to create a gauge chart step by step. A gauge chart
is very different from other Highcharts graphs. We will explore the new settings by
plotting something similar to a twin-dials Fiat 500 speedometer. After that we will
review the structure of the polar chart and its similarity with other charts. Then we
will move on to examine how to create a range chart by using examples from the
past chapter. Finally, we will use a gauge chart to tweak the radial gradient in stages
to achieve the desired effect. In this chapter we will cover the following:

�� Plotting a speedometer gauge chart
�� Converting a spline chart to a polar/radar chart
�� Plotting range charts with market index data
�� Using a radial gradient on a gauge chart

/RDGLQJ�JDXJH��SRODU��DQG�UDQJH�FKDUWV
In order to use any gauge, polar, and range W\SH�FKDUWV��ÀUVW�ZH�QHHG�WR�LQFOXGH�DQ�
DGGLWLRQDO�ÀOH��highcharts-more. js, provided in the package:

 <script type="text / javascript"
 src="ht tp: / /code.highcharts.com/highcharts. js"></script>
 <script type="text / javascript"
 src="ht tp: / /code.highcharts.com/highcharts-more. js"></script>

*DXJH��3RODU��DQG�5DQJH�&KDUWV

[148]

Plotting a speedometer gauge chart
Gauge charts have a very different structure compared to other Highcharts graphs.
For instance, the backbone of gauge charts is made up of a "pane". A pane is a
circular plot area for laying out chart content. We can adjust the size, position, and
the backgrounds of the pane. Once a pane is laid out, we can then put the axis on
top of it. Highcharts supports multiple panes within a chart, hence we can display
multiple gauges (that is multiple gauge series) within a chart. A gauge series is
FRPSRVHG�RI�WZR�VSHFLÀF�FRPSRQHQWV³D�SLYRW�DQG�D�GLDO�

Another distinct difference in gauge charts is that the series is actually one
dimensional data, that is a single value. Hence there is one axis, the y axis, used
in this type of chart. The yAxis properties are used the same way as other series
type charts which can be on a l inear, datet ime, or logari thmic scale, and it also
responds to the t ickInterval option and so on.

Plotting a twin dials chart – a Fiat 500
speedometer
So far, we have mentioned all the parts and their relationships that make up a gauge
chart. There are many selectable options that can be used with gauge charts. In order
to fully utilize them, we are going to learn in stages how to construct a sophisticated
gauge chart by following the design of a Fiat 500 speedometer, as follows:

Chapter 6

[�����]

The speedometer is assembled with two dials on top of each other. The outer
dial has two axes—mph and km/h. The inner dial is the rpm meter, which has a
different scale and style. Another uncommon feature is that the body parts of both
dials are hidden underneath; only the top needle parts are displayed. In the center
of the gauge is an LED screen showing journey information. Using all these unique
DSSHDUDQFHV��+LJKFKDUWV�SURYLGHV�HQRXJK�ÁH[LELOLW\�WR�DVVHPEOH�D�FKDUW�WKDW�ORRNV�
very similar.

Plotting a gauge chart pane
First, let's see what a pane does in Highcharts. In order to do that, we should start by
building a single dial speedometer. The following is the chart FRQÀJXUDWLRQ�FRGH�IRU�
a gauge chart with a single pane and a single axis:

 chart : {
 renderTo: ' container '
 },
 t i t le: { text : 'Fiat 500 Speedometer ' },
 pane: [{
 star tAngle: -120,
 endAngle: 120,
 size: 300,
 backgroundColor : ' #E4E3DF '
 }] ,
 yAxis: [{
 min: 0,
 max: 140,
 labels: {
 rotat ion: ' auto '
 }
 }] ,
 ser ies: [{
 type: ' gauge ' ,
 data: [0]
 }]

*DXJH��3RODU��DQG�5DQJH�&KDUWV

[150]

The preceding code snippet produces the following gauge chart:

At the moment, this looks nothing like a Fiat 500 speedometer but we will see the
FKDUW�HYROYLQJ�JUDGXDOO\��7KH�FRQÀJXUDWLRQ�GHFODUHV�D�SDQH�ZLWK�D�FLUFXODU�SORW�
area starting from -120 to 120 degrees, with the y axis laying horizontally, whereas
degree zero is at the twelve o'clock position. The rotat ion option generally takes a
numerical degree value; ' auto ' is the special keyword to enable the y-axis labels to
automatically rotate so that they get aligned with the pane angle. The little box below
the dial is the default data label showing the current value in the series.

Setting pane backgrounds
Gauge charts support more advanced background settings than just a single
background color, as we saw in the last example. Instead we can specify another
property, background, inside the pane option which accepts an array of different
background settings. Each setting can be declared as an inner ring with both the
innerRadius and outerRadius�GHÀQHG��RU�D�FLUFXODU�EDFNJURXQG�ZLWK�RQO\�WKH�
outerRadius option. Both options are assigned with percentage values with respect
to the size of the pane. Here we set multiple backgrounds to the pane, as follows:

 chart : { },
 t i t le: { },
 ser ies: [{
 name: ' Speed ' ,
 data: [0] ,
 dial : { backgroundColor : ' #FA3421 ' }
 }] ,
 pane: [{
 star tAngle: -120,
 endAngle: 120,

Chapter 6

[151]

 size: 300,
 background: [{
 backgroundColor : {
 radialGradient : {
 cx: 0.5,
 cy: 0.6,
 r : 1.0
 },
 stops: [
 [0.3, ' #A7A9A4 '] ,
 [0.45, ' #DDD '] ,
 [0.7, ' #EBEDEA '] ,
]
 },
 innerRadius: ' 72% ' ,
 outerRadius: ' 105% '
 }, {
 / / BG color in between speed and rpm
 backgroundColor : ' #38392F ' ,
 outerRadius: ' 72% ' ,
 innerRadius: ' 67% '
 }, {
 / / BG color for rpm

 }]

$V�ZH�FDQ�VHH��VHYHUDO�EDFNJURXQGV�DUH�GHÀQHG�ZKLFK�LQFOXGH�WKH�EDFNJURXQGV�IRU�
the inner gauge, the rpm dial. Some of these backgrounds are rings and the last one
is a circular background. Moreover, we have set the dial color to red initially, so that
we can still see the needle with the black background. Later in this section, we will
explore the details of shaping and coloring the dial and pivot. As for the backgrounds
with the radialGradient feature, we will examine them later in this chapter.

*DXJH��3RODU��DQG�5DQJH�&KDUWV

[152]

Managing axes with different scales
The next task is to lay a secondary y axis for the km/h scale and we will set the new
axis below the current display axis. :H�LQVHUW�WKH�QHZ�D[LV�FRQÀJXUDWLRQ��DV�IROORZV�

 yAxis: [{
 min: 0,
 max: 140,
 labels: {
 rotat ion: ' auto '
 }
 }, {
 min: 0,
 max: 220,
 t ickPosi t ion: ' outside ' ,
 minorTickPosi t ion: ' outside ' ,
 offset : -40,
 labels: {
 distance: 5,
 rotat ion: ' auto '
 }
 }] ,

The new axis has a scale from 0 to 220 and we use the offset option with a negative
value, which pushes the axes' line towards the center of the pane. In addition, both
t ickPosi t ion and minorTickPosi t ion are set to ' outside ' ; this changes the
interval ticks' direction opposite to the default settings. Both axes are now facing
each other which is similar to the one in the following photo:

Chapter 6

[153]

However, there is an issue arising in which the scale at the top axis has been
disturbed; it is no longer between 0 and 140. This is because the default action for
having a secondary axis is to align the intervals between multiple axes. To resolve
this issue, we must set the chart .al ignTicks option to false. After that, the issue
is resolved and both axes are laid out as expected, as follows:

Extending to multiple panes
Since the gauge consists of two dials, we need to add an extra pane for the second
GLDO��7KH�IROORZLQJ�LV�WKH�SDQH�FRQÀJXUDWLRQ�

 pane: [{
 / / Fi rst pane for speed dial
 star tAngle: -120,
 endAngle: 120,
 size: 300,
 background: [{
 backgroundColor : {
 radialGradient : {

 }]
 }, {
 / / Second pane for rpm dial
 star tAngle: -120,
 endAngle: 120,
 size: 200
 }]

*DXJH��3RODU��DQG�5DQJH�&KDUWV

[154]

7KH�VHFRQG�SDQH
V�SORW�DUHD�VWDUWV�DQG�HQGV�DW�WKH�VDPH�DQJOHV�DV�WKH�ÀUVW�SDQH�ZLWK�
a smaller size. Since we haven't used the center option to position any panes within
the chart, the inner pane is automatically placed at the center of the outer pane. The
next step is to create another axis, rpm, which has a red region marked between the
values of 4.5 and 6. Then we bind all the axes to their panes, as follows:

 yAxis: [{
 / / axis for mph - pane 0
 min: 0,
 max: 140,

 pane: 0
 }, {
 / / axis for km/h - pane 0
 min: 0,
 max: 220,

 pane: 0
 }, {
 / / axis for rpm - pane 1
 min: 0,
 max: 6,
 labels: {
 rotat ion: ' auto ' ,
 format ter : funct ion() {
 i f (this.value >= 4.5) {
 return ' <span style="color : ' +
 ' #A41E09"> ' + this.value +
 "";
 }
 return this.value;
 }
 },
 plotBands: [{
 from: 4.5,
 to: 6,
 color : ' #A41E09 ' ,
 innerRadius: ' 94% '
 }] ,
 pane: 1
 }]

Chapter 6

[155]

For the rpm axis, we use labels. format ter to mark up the font color in the high-
revolution region and also create a plot band for the axis. The innerRadius option is
to control how thick the red area appears to be. The next task is to create a new gauge
series, that is, a second dial for the new pane. Since the chart contains two different
dials, we need to make the dial movement relative to an axis; therefore we assign the
yAxis option to bind the series to an axis. Also we set the initial value for the new
series to 4, just for demonstrating how two dials are constructed, not superimposed
on each other, as follows:

 ser ies: [{
 type: ' gauge ' ,
 name: ' Speed ' ,
 data: [0] ,
 yAxis: 0
 }, {
 type: ' gauge ' ,
 name: 'RPM ' ,
 data: [4] ,
 yAxis: 2
 }]

With all these additional changes, the following is the new look of the internal dial:

In the next part, we will address how to set up the look and feel of the dial needles.

*DXJH��3RODU��DQG�5DQJH�&KDUWV

[�����]

Gauge series – dial and pivot
7KHUH�DUH�D�FRXSOH�RI�SURSHUWLHV�VSHFLÀF�WR�the gauge series which are plotOpt ions.
gauge.dial and plotOpt ions.gauge.pivot . The dial option controls the look and
feel of the needle itself, whereas pivot is the tiny circle object at the center of the
gauge attached to the dial.

First of all, we want to change the color and the thickness of the dials, as follows:

 ser ies: [{
 type: ' gauge ' ,
 name: ' Speed ' ,

 dial : {
 backgroundColor : ' #FA3421 ' ,
 baseLength: ' 90% ' ,
 baseWidth: 7,
 topWidth: 3,
 borderColor : ' #B17964 ' ,
 borderWidth: 1
 }
 }, {
 type: ' gauge ' ,
 name: 'RPM ' ,

 dial : {
 backgroundColor : ' #FA3421 ' ,
 baseLength: ' 90% ' ,
 baseWidth: 7,
 topWidth: 3,
 borderColor : ' #631210 ' ,
 borderWidth: 1
 }
 }]

Chapter 6

[157]

The preceding code snippet results in the following:

First we widen the needle by setting the baseWidth option to 7 pixels across and 3
pixels at the end of the needle. Then instead of having the needle narrowing down
gradually to the end of the tip, we set the baseLength option to ' 90% ' which is the
position on the dial where the needle starts to narrow down to a point.

As we can see, the dials are still not quite right in that they are not long enough to
reach to their axis lines, as shown in the photo. Secondly, the rest of the dial bodies
DUH�QRW�FRYHUHG�XS��:H�FDQ�UHVROYH�WKLV�LVVXH�E\�ÀGGOLQJ�ZLWK�WKH�rearLength
option. The following is the amendment of series settings:

 ser ies: [{
 type: ' gauge ' ,
 name: ' Speed ' ,

 dial : {

 radius: ' 100% ' ,
 rearLength: ' -74% '
 },
 pivot : { radius: 0 }
 }, {

*DXJH��3RODU��DQG�5DQJH�&KDUWV

[158]

 type: ' gauge ' ,
 name: 'RPM ' ,

 dial : {

 radius: ' 100% ' ,
 rearLength: ' -74% '
 },
 pivot : { radius: 0 }
 }]

The trick is that instead of having a positive value like most of the gauge charts would
have, we input a negative value that creates the covered-up effect. Finally, we remove
the pivot by specifying radius as 0��7KH�IROORZLQJ�LV�WKH�ÀQDO�DGMXVWPHQW�RI�WKH�GLDOV�

Polishing the chart with fonts and colors
The next step is to apply the axis options to tweak the tick intervals' color and size.
The axis labels use fonts from the Google web fonts service (See ht tp: / /www.google.
com/webfonts for Google web fonts.). Then we adjust the font size and color similar
to the one shown in the photo. There is a myriad of fonts to choose from with Google
web fonts and they come with easy instructions to apply. The following is an example
of embedding the "Squada One" font into the <head>�VHFWLRQ�RI�DQ�+70/�ÀOH�

<l ink href= ' ht tp: / / fonts.googleapis.com/css?fami ly=Squada One '
 rel= ' stylesheet ' type= ' text /css ' >

Chapter 6

[�����]

7KLV�VLJQLÀFDQWO\�LPSURYHV�WKH�ORRN�RI�WKH�gauge, as follows:

7KH�ÀQDO�SDUW�LV�WR�WUDQVIRUP�WKH�VHULHV�GDWD�ODEHOV�WR�UHVHPEOH�DQ�/('�VFUHHQ��
We will change the data labels' font size, style, and color and remove the border of
the label box. The rpm data label has a smaller font size and moves above the mph
data label. To make it look more realistic, we will also set the background for the
data labels to a pale orange color. All the details of the tunings can be found in the
online example at ht tp: / / joekuan.org/Learning_Highcharts/Chapter_6/ .
7KH�IROORZLQJ�LV�WKH�ÀQDO�ORRN�RI�WKH�SROLVKHG�JDXJH�FKDUW�

*DXJH��3RODU��DQG�5DQJH�&KDUWV

[�����]

Converting a spline chart to a
polar/radar chart
Polar (or radar) charts are generally used for spotting data trends. They have few
differences to line and column type charts. Even though it may look like a pie chart,
it has nothing in common with one. In fact, a polar chart is a round representation of
the conventional two-dimensional charts. To visualize it another way, it is a folded
line or a column chart placed in a circular way with both ends of x axis meeting
together. The following screenshot illustrates the structure of a polar chart:

As there are very little differences in principle, the same also applies to the
+LJKFKDUWV�FRQÀJXUDWLRQ��/HW
V�XVH�RXU�YHU\�ÀUVW�H[DPSOH�EURZVHU
V�XVDJH�FKDUW�LQ�
Chapter 1, Web Charts, and turn it into a radar chart. Recalling the browser's line chart,
we have the following:

Chapter 6

[�����]

To turn the line chart into a polar chart, we only need to set the chart .polar option
to t rue which transforms the orthogonal x and y coordinates into a polar coordinate
system. To make the new polar chart easier to read, we set the x-axis labels'
rotat ion to ' auto ' , as follows:

 chart : {

 polar : t rue
 },
 ,
 xAxis: {
 ,
 labels: { rotat ion: ' auto ' }
 },

*DXJH��3RODU��DQG�5DQJH�&KDUWV

[�����]

The following is the polar version of the line chart:

As we can see, a characteristic of a polar chart is that it reveals data trends differently
compared to conventional charts. From a clockwise direction, we see the data line
"spirals up" for an upward trend (Chrome) and "spirals down" for a downward
WUHQG��,QWHUQHW�([SORUHU���ZKHUHDV�WKH�GDWD�OLQH�IRU�)LUHIR[�UHÁHFWV�ZLWKRXW�PXFK�
movement. As for Safari and Opera, essentially these series are lost as they are
FRPSOHWHO\�LQYLVLEOH��$QRWKHU�FKDUDFWHULVWLF�LV�WKDW�WKH�ODVW�DQG�ÀUVW�GDWD�SRLQWV�LQ�
the series are connected together. As a result, the Firefox series shows a closed loop
and there is a sudden jump in the Internet Explorer series (the Chrome series is
not connected because it already has null values in the beginning of the series; the
Chrome browser was not released until late 2008.). To correct this behavior, we can
simply add a null value at the end of each series data array to break the continuity,
which is demonstrated in the following screenshot:

Chapter 6

[�����]

Instead of having a round polar chart, Highcharts supports polygon interpolation
along the y-axis grid lines. This means the grid lines are straightened and the whole
chart becomes like a spider web.

For the sake of illustration, we set the width of x- and y-axis lines to 0, which
removes the round outline from the chart. Then we set a special option on
the y axis—gridLineInterpolat ion to ' polygon ' . Finally, we change the
t ickmarkPlacement option of the x axis to ' on ' instead of the default value,
' between ' . This basically gets the interval ticks on the x axis to align with the
start of each category. The following code snippet summarizes the changes that
we need to make:

 xAxis: {
 categories: [.] ,
 t ickmarkPlacement : ' on ' ,
 labels: {
 rotat ion: ' auto ' ,
 },
 l ineWidth: 0,
 plotBands: [{
 from: 10,
 to: 11,
 color : ' #FF0000 '
 }]

*DXJH��3RODU��DQG�5DQJH�&KDUWV

[�����]

 },
 yAxis: {
 ,
 gr idLineInterpolat ion: ' polygon ' ,
 l ineWidth: 0,
 min: 0
 },

In order to demonstrate a spider web shape, we will remove most of the data
samples from the previous chart. We will also add a couple of grid line decorations
and an x-axis plot band (Nov – Dec) just to show that other axis options can still be
applied to a polar chart:

Plotting range charts with market
index data
Range charts are really line and column type charts presenting a series of data in range.
The set of range type series can be arearange, areaspl inerange, and columnrange.
These series expect an array of three data points, x, y min, y max, in the data option or
array of y min, y max if xAxis.cateogries has DOUHDG\�EHHQ�VSHFLÀHG�

Chapter 6

[�����]

Let's use our past examples to see whether we can make an improvement to the
range charts. Back in Chapter 2, +LJKFKDUWV�&RQÀJXUDWLRQV��ZH�KDYH�D�ÀYH�VHULHV�JUDSK�
showing the monthly data of Nasdaq 100—open, close, high, low, and volume, as
shown in the following screenshot:

With the new range series, we sort the series data and merge the Monthly High and
Monthly Low columns into a column range series and the Open and Low columns
into an area spline range series, as follows:

 ser ies: [{
 type: ' columnrange ' ,
 name: 'High & Low ' ,
 data: [[2237.73, 2336.04] ,
 [2285.44, 2403.52] ,
 [2217.43, 2359.98] , ]
 }, {
 type: ' areaspl inerange ' ,
 name: 'Open & Close ' ,
 / / This array of data are pre-sorted,
 / / not in Open, Close order .
 data: [[2238.66, 2336.04] ,
 [2298.37, 2350.99] ,
 [2338.99, 2359.78] , ]
 }, {
 name: 'Volume ' ,

*DXJH��3RODU��DQG�5DQJH�&KDUWV

[�����]

The following screenshot shows the range chart version:

The new chart looks much simpler to read and the graph is less packed. It is worth
noting that for the column range series, it is mandatory to keep the range as min
to max order. As for the area spline and area range series type, we can still plot the
range series even without sorting them beforehand.

For instance, the High & Low range series have to be in between min and max order,
according to the natural meaning of the name of the series. However, this is not the
same for the Open & Close range series; we wouldn't know which way is open or
close. If we plot the Open & Close area range series by keeping the range as open
to close order instead of y min to y max, the area range is displayed differently, as
shown in the following screenshot:

Chapter 6

[�����]

As we can see, there are twisted bits in the area range series; these crossovers are
caused by the reverse order in the data pairs. Nonetheless, we won't know whether
open is higher than close or vice versa. If we only want to know how wide the range
between the Open & Close series is, then the preceding area range chart achieves the
goal. By keeping them as separate series, there will be no such issue. In a nutshell,
this is the subtle difference for plotting range series data with ambiguous meanings.

Using a radial gradient on a gauge chart
The radial gradient setting is based on SVG. As its name implies, a radial gradient
is color shading radiating outwards in a circular direction. Therefore, it requires
WKUHH�SURSHUWLHV�WR�GHÀQH�WKH�JUDGLHQW�FLUFOH³cx, cy, and r. The gradient circle is
the outermost circle for shading, such that no shading can go outside of this. All the
JUDGLHQW�SRVLWLRQV�DUH�GHÀQHG�LQ�UDWLR�YDOXHV�EHWZHHQ�]HUR�DQG�RQH�ZLWK�UHVSHFW�WR�
their containing elements. The cx and cy options are at the x, y center position of the
outermost circle, whereas r is the radius of the outmost circle. If r is 0.5, it means
the gradient radius is half the diameter of its element, that is, the same size as the
containing pane. In other words, the gradient starts from the center and goes all the
way to the edge of the gauge. The stop offsets option works the same way as the
OLQHDU�JUDGLHQW��WKH�ÀUVW�SDUDPHWHU�LV�WKH�UDWLR�SRVLWLRQ�LQ�WKH�JUDGLHQW�FLUFOH�WR�VWRS�
the shading. These control the intensity of shading between the colors. The shorter
the gap, the higher the contrast between the colors.

*DXJH��3RODU��DQG�5DQJH�&KDUWV

[�����]

Let's explore how to set up the color gradient. The following is a mood swing
detector without any color gradient:

We will apply a radial gradient to the preceding chart with the following settings:

 background: [{
 backgroundColor : {
 radialGradient : {
 cx: 0.5,
 cy: 0.5,
 r : 0.5,
 },
 stops: [
 [0, ' #CCD5DE '] ,
 [1, ' #002E59 '] ,
]
 }
 }]

We have set cx, cy, and r to 0.5 for the gradient to start shading from the center
position all the way towards the edge of the circle, as follows:

Chapter 6

[�����]

As we can see, the preceding chart shows white shading evenly radiating from the
center. Let's change some of the parameters and see the effect:

 backgroundColor : {
 radialGradient : {
 cx: 0.5,
 cy: 0.7,
 r : 0.25,
 },
 stops: [
 [0.15, ' #CCD5DE '] ,
 [0.85, ' #002E59 '] ,
]
 }

Here we have changed the size of the gradient circle to half the size of the gauge
and moved the circle down. The bright color doesn't start shading until it reaches
15 percent of the size of the gradient circle, hence there is a distinct white blob in
the middle, and the shading stops at 85 percent of the circle:

In the SVG radiant gradient, there are two other options, fx and fy, which are used
for setting the focal point position for the shading; they are also referred to as the
inner circle settings. Let's experiment with how the focal point can affect the shading:

 backgroundColor : {
 radialGradient : {
 cx: 0.5,
 cy: 0.7,
 r : 0.25,
 fx: 0.6,
 fy: 1.0
 },
 stops: [
 [0.15, ' #CCD5DE '] ,
 [0.85, ' #002E59 '] ,
]
 }

*DXJH��3RODU��DQG�5DQJH�&KDUWV

[170]

The preceding code snippet produces the following:

We can observe that the fx and fy options move the bright color starting from the
bottom of the gradient circle and slightly to the right-hand side. This makes the
VKDGLQJ�PXFK�PRUH�GLUHFWLRQDO��)LQDOO\�ZH�FDQ�ÀQLVK�WKH�FKDUW�E\�PRYLQJ�WKH�EULJKW�
side to where we want it to be, as follows:

The fx and fy options are only for SVG, which older versions
of Internet Explorer (8.0 or earlier) using VML won't support.

Chapter 6

[171]

Summary
In this chapter we learned about gauge, polar, and range charts. An extensive step-
by-step demonstration showed how to plot a complex speedometer by utilizing most
of the gauge options. We also demonstrated the little difference between the polar,
FROXPQ��DQG�OLQH�FKDUWV�ZLWK�UHVSHFW�WR�SULQFLSOH�DQG�FRQÀJXUDWLRQ��:H�XVHG�UDQJH�
charts to improve past chapter examples and study the subtle differences they insert
LQWR�WKH�FKDUW��)LQDOO\��ZH�H[SORUHG�KRZ�WR�GHÀQH�UDGLDO�JUDGLHQWV�E\�WZHDNLQJ�WKH�
options in stages.

In the next chapter we will explore the Highcharts APIs, which are responsible
for making a dynamic chart, such as using Ajax query to update the chart content,
accessing components in Highcharts objects, and exporting charts to SVG.

Highcharts APIs
Highcharts offers a small set of APIs that are aimed for plotting charts with dynamic
LQWHUDFWLRQV��,Q�RUGHU�WR�XQGHUVWDQG�KRZ�WKH�$3,V�ZRUN��ZH�PXVW�ÀUVW�IDPLOLDUL]H�
ourselves with the chart's internal objects and how they are organized inside a chart.
In this chapter, we will learn about the chart classes model and how to call the APIs
by referencing the objects. Then a simple stock price application is built with PHP,
jQuery, and jQuery UI to demonstrate the use of Highcharts APIs. After that, we
turn our attention to four different ways of updating a series. We experiment with
all the series update methods with a purpose to build an application to illustrate
the variation in visual effects and CPU performance between them. Finally, we
investigate the performance of updating a series in terms of different sizes of datasets
with popular web browsers.

�� Understanding the Highcharts class model
�� Getting data in Ajax and displaying new series with Chart .addSeries

�� Displaying multiple series with simultaneous Ajax calls
�� Using Chart .getSVG�WR�IRUPDW�69*�GDWD�LQWR�DQ�LPDJH�ÀOH
�� Using Chart . renderer methods
�� Exploring different methods to update series and their performances
�� Experimenting Highcharts' performance on large datasets

Highcharts APIs

[174]

Understanding the Highcharts class model
The relationship between Highcharts classes is very simple and obvious. A chart
LV�FRPSRVHG�RI�ÀYH�GLIIHUHQW�FODVVHV³Chart , Axis, Series, Point , and Renderer.
Some of these classes contain an array of lower-level components and an object
property to back reference to a higher level-owner component, for example, Point
class has the series property pointing back to the owner Series class. Each
class also has a set of methods for managing and displaying for its own layer. The
following class diagram describes the association between these classes:

Chart is the top level class representing the whole chart object. It contains method
calls to operate the chart as a whole, for example, exporting the chart into SVG or
other image formats and setting the dimension of the chart, and so on. The class
Chart has multiple arrays of Axis and Series objects, that is, a chart can have one
or more x axis, y axis, and series. The Renderer class is a utility class that has a
one-to-one relationship per chart and to provide a common interface for drawing
in SVG and VML-based browsers.

Chapter 7

[175]

The Series class has an array of Point objects. The class has back reference
properties towards Chart and Axis objects (see the dotted lines in the previous
diagram) and provides functions for managing its list of Point objects. The yAxis and
xAxis properties in the Series class are necessary, as a chart can have multiple axes.

The Point class is just a simple object containing X and Y values and a back reference
to its series object (see the dotted line). The APIs are for managing the data point in
the chart.

Highcharts constructor – Highcharts.Chart
Needless to say, the most important method in the APIs is the Highcharts.Chart
with which we have seen plenty of actions so far. However, there is more to this
constructor call. Highcarts.Chart creates and returns a chart object but it also has a
second optional parameter known as cal lback.

Chart(Object opt ions, [Funct ion cal lback])

The callback function is called when a chart is created and rendered. Inside the
function, we can either call the components' methods or access the properties inside
the chart object. The newly created chart object is passed via the only callback
function parameter. We can also use the ' this ' keyword inside the callback
function, which also refers to the chart object. Instead of using the Highcharts.
Chart callback parameter, we can achieve the same by declaring our code inside the
chart .events. load handler, which will be explored in the next chapter.

)RU�JHQHUDO�XVH��LW�ZRUNV�ÀQH�WR�DFFHVV�WKH�FKDUW�REMHFW�DIWHU�WKH�Highcharts.Chart
call. Strictly speaking, all the code referring to the chart object should be located
inside the callback handler for two reasons as follows:

�� There is an issue with IE that the $. ready method can be called before
the scripts are loaded under a certain scenario (there is a bug in jQuery
1.8.0 in which the ready method is called before the scripts are loaded. See
ht tp: / /bugs. jquery.com/ t icket /12018��7KLV�EXJ�KDV�EHHQ�À[HG�LQ����������
Putting the code inside the callback function can avoid such a problem.

�� ,W�FDQ�EH�EHQHÀFLDO�LI�ZH�ZDQW�WR�UXQ�D�FRQFXUUHQW�-DYD6FULSW�FRGH�RQ�WKH�
chart object. For example, using the new HTML5 Worker object to split the
heavy work into separate threads.

Highcharts APIs

[�����]

Navigating through Highcharts components
In order to use the Highcharts API, we must navigate to the right object inside the
class hierarchy. There are several ways to traverse within the chart object—through
the chart hierarchy model, retrieving the component directly with Chart .get
method, or a mixture of both.

Using object hierarchy
Suppose that the chart object is created, as follows:

<script type="text / javascript">
 $(document) . ready(funct ion() {
 var chart = new Highcharts.Chart({
 . . .
 xAxis: [{

 }, {

 }] ,
 ser ies: [{
 data: [. . .]
 }, {
 data: [. . .]
 }] ,
 . . .
 }) ;
 }, funct ion() {
 . . .
 }) ;
</script>

:H�FDQ�WKHQ�JHW�WKH�ÀUVW�VHULHV�REMHFW�IURP�WKH�FKDUW�LQVLGH�WKH�FDOOEDFN�KDQGOHU�
as follows:

var series = this.ser ies[0];

6XSSRVH�WKHUH�DUH�WZR�[�D[HV�LQ�WKH�FRQÀJXUDWLRQ��To retrieve the second x axis, we
can do as follows:

var xAxis = this.xAxis[1];

To retrieve the third data point object from the second series of the chart, type
the following :

var point = this.ser ies[1] .data[2];

Chapter 7

[177]

Using the Chart.get method
Instead of cascading down the object hierarchy, we can directly retrieve the
component using the Chart .get method (the get method is only available at
the chart level, not in each component class). To do so, the component must be
FRQÀJXUHG�ZLWK�WKH�id�RSWLRQ�LQ�WKH�ÀUVW�SODFH��

6XSSRVH�ZH�KDYH�FUHDWHG�D�FKDUW�ZLWK�WKH�IROORZLQJ�FRQÀJXUDWLRQ�FRGH�

xAxis: {
 id: ' xAxis ' ,
 categories: [. . .]
},
ser ies: [{
 name: 'UK ' ,
 id: ' uk ' ,
 data: [4351, 4190,
 { y: 4028, id: ' thirdPoint ' },
 . . .]
}]

We can retrieve the components as follows:

var series = this.get(' uk ') ;
var point = this.get(' thirdPoint ') ;
var xAxis = this.get(' xAxis ') ;

Using the object hierarchy and Chart.get method
,W�LV�FXPEHUVRPH�WR�GHÀQH�WKH�id option for every component inside the chart.
Alternatively, we can navigate through the components using both the approaches,
as follows:

var point = this.get(' uk ') .data[2];

Using Highcharts APIs
In this section, we will build an example using jQuery, jQuery UI, and Highcharts
to explore each component's APIs. All the example code from here on will be using
object hierarchy to access chart components, that is chart .ser ies[0] .data[0]. The
user interface used here has a very minimal look and is far from perfect, as the main
purpose of this exercise is to examine the Highcharts APIs.

Highcharts APIs

[178]

First, let's see the usage of this user interface and then we will dissect the code to
understand how the operations are performed. The following is the screenshot of
the frontend:

This is a simple web front end for plotting the stock data chart for the past 30 days.
The top part is a group of buttons for setting the stock symbols, getting the stock
price, and retrieving the chart image by downloading it or via e-mail. The Add to the
list button is for adding a stock symbol straight to the list without getting the stock
prices and plotting the data. The Plot All button is for launching multiple stock price
queries from the symbol list simultaneously and to plot the data when all the results
arrive. Alternatively, Add & Plot is a quick option for plotting a single stock symbol.

The bottom half contains a chart that we have already created. The chart is displayed
with empty data and axes with titles (setting the showAxes option to t rue). The
whole idea is to re-use the existing chart rather than re-creating a new chart object
HYHU\�WLPH�QHZ�UHVXOWV�DUULYH��7KHUHIRUH�WKHUH�LV�QR��ÁLFNHULQJ��HIIHFW�ZKHQ�WKH�FKDUW�
is destroyed and created and it appears as a smooth update animation. Also this
gives a better performance without running extra code to regenerate the chart object.

Chapter 7

[�����]

This example is also available online at ht tp: / / joekuan.org/
Learning_Highcharts/Chapter_7/Example_1.html . Due to security
restrictions, the e-mail and download chart features are disabled in the
online demo.

&KDUW�FRQ¿JXUDWLRQV
The following is the FKDUW�FRQÀJXUDWLRQ�XVHG�IRU�WKH�H[DPSOH��7KH�[�D[LV�LV�
FRQÀJXUHG�DV�D�datet ime type with intervals on a daily basis, as follows.

 var chart = new Highcharts.Chart({
 chart : {
 renderTo: ' container ' ,
 showAxes: t rue,
 borderWidth: 1
 },
 t i t le: { text : 'Last 30 days stock pr ice ' },
 credi ts: { text : 'Learning Highcharts ' },
 xAxis: {
 type: ' datet ime ' ,
 t ickInterval : 24 * 3600 * 1000,
 dateTimeLabelFormats: { day: '%Y-%m-%d ' },
 t i t le: {
 text : 'Date ' ,
 al ign: ' high '
 },
 labels: {
 rotat ion: -45,
 al ign : ' center ' ,
 step: 2,
 y: 40,
 x: -20
 }
 },
 yAxis: {
 t i t le: { text : 'Pr ice ($) ' }
 },
 plotOpt ions: {
 l ine: { al lowPointSelect : t rue }
 }
 }) ;

Highcharts APIs

[180]

Getting data in Ajax and displaying new series
with Chart.addSeries
Let's examine the action behind the Add & Plot button, ZKLFK�LV�GHÀQHG�DV�WKH�
following HTML syntax:

<input type= ' but ton ' value= 'Add & Plot ' id= ' plotStock ' >

The jQuery code for the button action is listed, as follows:

 $(' #plotStock ') .but ton() .cl ick(
 funct ion(evt) {

 / / Get the input stock symbol , empty the
 / / l ist andinsert the new symbol into the l ist
 $(' #stockl ist ') .empty() ;
 var symbol = $(' #symbol ') .val() ;
 $(' #stockl ist ') .append($("<l i />") .append(symbol)) ;

 / / Kick off the loading screen
 chart .showLoading("Get t ing stock data") ;

 / / Launch the stock query
 $.getJSON(' . /stockQuery.php?symbol= ' +
 symbol . toLowerCase() ,
 funct ion(stockData) {
 / / parse JSON response here

 }
) ;
 }
) ;

7KH�SUHYLRXV�FRGH�GHÀQHV�WKH�HYHQW�KDQGOHU�IRU�WKH�Add & Plot button's click
event. First, it empties all the entries in the stock symbol list box that have IDs as
stockl ist ��7KHQ�LW�UHWULHYHV�WKH�VWRFN�V\PERO�YDOXH�IURP�WKH�LQSXW�ÀHOG�symbol and
appends the symbol into the list. The next step is to initiate a loading message screen
on the chart by calling the chart .showLoading method. The following shows the
loading message screen:

Chapter 7

[181]

The next call is to launch a jQuery Ajax call, $.getJSON, to query the stock price. The
server script stockQuery.php (of course any other server-side language can be used)
does two tasks—resolves the symbol into full name of the organization and launches
the symbol query from another website (ht tp: / / ichart . f inance.yahoo.com/) for
the past stock price data, then packs the data into rows and encodes them into JSON
format. The following is the code in the stockQuery.php�ÀOH�

<?php
 $ch = curl_ini t () ;
 cur l_setopt($ch, CURLOPT_RETURNTRANSFER , t rue);

 / / Get the stock symbol name
 cur l_setopt($ch, CURLOPT_URL, "ht tp: / /download. f inance.yahoo.com/d/
quotes.csv?s={$symbol}&f=n");
 $resul t = curl_exec($ch);
 $name = t r im(tr im($resul t) , ' " ') ;

 / / Get from now to 30 days ago
 $now = t ime() ;
 $toDate = local t ime($now, t rue);
 $toDate[' tm_year '] += 1900;
 $fromDate = local t ime($now - (86400 * 30) , t rue);
 $fromDate[' tm_year '] += 1900;
 $dateParams = "a={$fromDate[' tm_mon ']}&b={$fromDate[' tm_
mday ']}&c={$fromDate[' tm_year ']}" ."&d={$toDate[' tm_
mday ']}&e={$toDate[' tm_mday ']}&f={$toDate[' tm_year ']}";

 cur l_setopt($ch, CURLOPT_URL, "ht tp: / / ichart . f inance.yahoo.com/
table.csv?s={$symbol}&{$dateParams}&g=d");
 $resul t = curl_exec($ch);
 cur l_close($ch);

 / / Remove the header row
 $l ines = explode("\n", $resul t) ;
 array_shif t($l ines);

 $stockResul t[' rows '] = array() ;
 / / Parse the resul t into dates and close value
 foreach((array) $l ines as $ln) {
 i f (!str len(tr im($ln))) {
 cont inue;
 }

Highcharts APIs

[182]

 l ist($date, $o, $h, $l , $c, $v, $ac) =
 explode(",", $ln, 7) ;
 l ist($year , $month, $day) = explode(' - ' , $date, 3) ;
 $tm = mkt ime(12, 0, 0, $month, $day, $year) ;
 $stockResul t[' rows '][] =
 array(' date ' => $tm * 1000,
 ' pr ice ' => f loatval($c)) ;
 }

 $stockResul t[' name '] = $name;
 echo json_encode($stockResul t) ;
?>

The following is the result returned from the server side in JSON format:

{"rows":[{"date":1348138800000,"price":698.7},
 {"date":1348225200000,"price":700.09},
 . . .] ,
 "name": "Apple Inc."
}

2QFH�WKH�-621�UHVXOW�DUULYHV��WKH�GDWD�LV�SDVVHG�WR�WKH�GHÀQLWLRQ�RI�WKH�KDQGOHU�
of getJSON and parsed into an array of rows. The following are the details of the
handler code:

$.getJSON(' . /stockQuery.php?symbol= ' +
 symbol . toLowerCase() ,
 funct ion(stockData) {

 / / Remove al l the chart exist ing series
 whi le(chart .ser ies. length) {
 chart .ser ies[0] . remove()
 }

 / / Construct ser ies data and add the series
 $.each(stockData. rows,
 funct ion(idx, data) {
 $.histStock.push([data.date,
 data.pr ice]) ;
 }
) ;

 var ser iesOpts = {
 name: stockData.name + ' - (' + symbol + ') ' ,
 data: $.histStock,

 / / This is to stop Highcharts rotat ing
 / / the color and data point symbol for
 / / the series
 color : chart .opt ions.colors[0] ,

Chapter 7

[183]

 marker: {
 symbol : chart .opt ions.symbols[0]
 }
 };

 chart .hideLoading() ;
 chart .addSeries(seriesOpts) ;
 }
) ;

First of all, we remove all the existing series displayed in the chart by calling
Series. remove. We then construct a series option with a data array of date (in UTC
time) and price. We then remove the loading screen with Chart .hideLoading and
display a new series with the Chart .addSeries methods. The only minor issue
is that the default color and point marker for the series changes when the series
is re-inserted, that is, the internal indices in chart .opt ions.colors and chart .
opt ions.symbols are incremented when a series is removed and added back to the
chart. We explicitly set the series color and point symbol to resolve this issue.

Alternatively, we can call Series.setData to achieve the same result but once the
name (subject) of a series is assigned and the series is created, it is not allowed to
change. Therefore, we stick to Chart .addSeries and Series. remove in this example.

The following is the screenshot of a single stock query:

Highcharts APIs

[184]

Displaying multiple series with simultaneous
Ajax calls
The next part is to explore how to launch multiple Ajax queries simultaneously
and plot series together when all the results have been returned. The implementation
is pretty much the same as plotting a single stock query except that we build up
the series array option as we gather the result and plot them only when the last
result arrives.

/ / Query al l the stocks simul taneously and
/ / plot mul t ipleseries in one go
$(' #plotAl l ') .but ton() .cl ick(

 funct ion(evt) {

 / / Kick off the loading screen
 chart .showLoading("Get t ing mul t iple stock data") ;

 / / Get the l ist of stock symbols and launch
 / / the query foreach symbol
 var total = $(' #stockl ist ') .chi ldren() . length;

 / / star t Ajax request for each of the i tems separately
 $.each($(' #stockl ist ') .chi ldren() ,
 funct ion(idx, i tem) {
 var symbol = $(i tem) . text() ;
 $.getJSON(' . /stockQuery.php?symbol= ' +
 symbol . toLowerCase() ,
 funct ion(stockData) {

 / / data arr ives, bui ldup the series array
 $.each(stockData. rows,
 funct ion(idx, data) {
 $.histStock.push([data.date,
 data.pr ice]) ;
 }
) ;

Chapter 7

[185]

 ser iesOpts.push({
 name: stockData.name + ' - (' +
 symbol + ') ' ,
 data: $.histStock,
 / / This is to stop Highcharts
 / / rotat ing the colorfor the series
 color : chart .opt ions.colors[idx] ,
 marker: {
 symbol : chart .opt ions.symbols[idx]
 }
 }) ;

 / / Plot the series i f this resul t
 / / is the last one
 i f (ser iesOpts. length == total) {

 / / Remove al l the chart exist ing series
 whi le (chart .ser ies. length) {
 chart .ser ies[0] . remove()
 }

 chart .hideLoading() ;
 $.each(seriesOpts,
 funct ion(idx, hcOpt ion) {
 chart .addSeries(hcOpt ion,
 false);
 }
) ;

 chart . redraw() ;
 } / / else – do nothing,
 / / not al l resul ts came yet
 } / / funct ion(stockData)
) ; / / getJSON
 }) ; / / $.each($(' #stockl ist ')
 }) ; / / on(' cl ick '

Highcharts APIs

[�����]

The second Boolean parameter of Chart .addSeries, redraw, is passed as false.
,QVWHDG��ZH�ÀQDOL]H�DOO�WKH�XSGDWHV�LQ�RQH�VLQJOH�FDOO��Chart . redraw, to save CPU
time. The following is the screenshot for the multiple stock queries:

Extracting SVG data with Chart.getSVG
In this section, we will learn how to extract the chart output and deliver it via
H�PDLO�RU�ÀOH�GRZQORDG��$OWKRXJK�ZH�FDQ�UHO\�RQ�WKH�H[SRUWLQJ�PRGXOH�DQG�FDOO�
the exportChart method to export the chart into desired image format, it would
EH�EHQHÀFLDO�WR�VHH�WKH�ZKROH�SURFHVV�IURP�IRUPDWWLQJ�WKH�RULJLQDO�69*�FRQWHQW�WR�
DQ�LPDJH�ÀOH��$IWHU�WKDW��LW�LV�MXVW�D�PDWWHU�RI�FDOOLQJ�GLIIHUHQW�XWLOLWLHV�WR�GHOLYHU�WKH�
LPDJH�ÀOH�RQ�WKH�VHUYHU�VLGH��

To extract the data underneath SVG from the displaying chart, the getSVG method
is called, which is available when the exporting module is loaded. This method
is similar to exportChart ; it accepts the chartOpt ions parameter, which is for
DSSO\LQJ�FRQÀJXUDWLRQV�WRZDUGV�WKH�H[SRUW�FKDUW�RXWSXW�

Here is the client-side jQuery code for handling both Download and Email buttons.

Chapter 7

[187]

Here, we use the protocol variable to specify the action for the chart and both
EXWWRQV�FDOO�WKH�GHÀQHG�FRPPRQ�IXQFWLRQ��del iverChart :

 / / Export chart into SVG and del iver i t to the server
 funct ion del iverChart(chart , protocol , target) {

 / / Fi rst extracts the SVG markup content from the
 / / displayed chart
 var svg = chart .getSVG() ;

 / / Send the whole SVG to the server and ur l
 $.post(' . /del iverChart .php ' , {
 svg: svg,
 protocol : protocol ,
 target : target
 },
 funct ion(resul t) {
 var message = nul l ;
 var t i t le = nul l ;

 swi tch (protocol) {

 / / Create a dialog box to show the
 / / sent status
 case 'mai l to ' :
 message = resul t .success ?
 'The mai l has been sent successful ly ' :
 resul t .message;
 t i t le = 'Emai l Chart ' ;
 break;

 / / Uses hidden frame to download the
 / / image f i le created on the server side
 case ' f i le ' :
 / / Only popup a message if error occurs
 i f (resul t .success) {
 $(' #hidden_iframe ') .at t r("src",
 "dlChart .php");
 } else {
 message = resul t .message;
 t i t le = 'Download Chart ' ;
 }
 break;
 }

 i f (message) {
 var msgDialog = $(' #dialog ') ;

Highcharts APIs

[188]

 msgDialog.dialog({ autoOpen: false,
 modal : t rue, t i t le: t i t le}) ;
 msgDialog. text(message);
 msgDialog.dialog(' open ') ;
 }
 }, ' json ') ;
 }

The del iverChart �PHWKRG�ÀUVW�FDOOV�WKH�+LJKFKDUWV�$3,�getSVG to extract the
SVG content, then launches a POST call with both SVG data and action parameters.
When $.post returns with a task status value, it shows a message dialog. As for the
download chart, we create a hidden <iframe>�WR�GRZQORDG�WKH�FKDUW�LPDJH�ÀOH�XSRQ�
the success return.

The following is a simple server-side script for converting the SVG content and
GHOLYHULQJ�WKH�H[SRUWHG�ÀOH�

<?php
$svg = $_POST[' svg '] ;
$protocol = $_POST[' protocol '] ;
$target = $_POST[' target '] ;

funct ion returnError($output) {
 $resul t[' success '] = false;
 $resul t[' error '] = implode("
", $output) ;
 echo json_encode($resul t) ;
 exi t(1) ;
}

/ / Format the svg into an image f i le
f i le_put_contents("/ tmp/chart .svg", $svg);
$cmd = "convert / tmp/chart .svg / tmp/chart .png";
exec($cmd, $output , $rc) ;
i f ($rc) {
 returnError($output) ;
}

/ / Del iver the chart image f i le according to the ur l
i f ($protocol == 'mai l to ') {

 $cmd = "EMAIL= ' {$target} ' mut t -s 'Here is the chart ' -a / tmp/chart .
png -- {$protocol}:{$target} <<.
Hope you l ike the chart
.";

Chapter 7

[�����]

 exec($cmd, $output , $rc) ;
 i f ($rc) {
 returnError($output) ;
 }
 $resul t[' success '] = t rue;

} else i f ($protocol == ' f i le ') {
 $resul t[' success '] = t rue;
}

echo json_encode($resul t) ;
?>

The web server is running on a Linux platform (Ubuntu 12.04). As for the e-mail
action, we use two command line utilities to help us. First is a fast image conversion
tool, convert, which is part of the ImageMagick package (see the package website for
more details: ht tp: / /www . imagemagick.org/script / index.php). Inside the script,
we save the SVG data from the POST�SDUDPHWHU�LQWR�D�ÀOH�DQG�WKHQ�UXQ�WKH�FRQYHUW�
tool to format it into a PNG image. The convert tool supports many other image
formats and comes with a myriad of advanced features. Alternatively, we can use
Batik to do a straightforward conversion by issuing the following command:

java - jar bat ik-raster izer . jar / tmp/chart .svg

7KH�JLYHQ�FRPPDQG�DOVR�FRQYHUWV�DQ�69*�ÀOH�DQG�RXWSXWV�/ tmp/chart .png
automatically. For the sake of implementing the e-mail feature quickly, we will
launch an e-mail tool, mutt (see the package website for more details: ht tp: / /www .
mut t .org���LQVWHDG�RI�XVLQJ�WKH�3+3�PDLO�H[WHQVLRQ��2QFH�WKH�31*�LPDJH�ÀOH�LV�
created, we use mutt to send it as an attachment and use a heredoc to specify the
message body.

A heredoc is a quick way of inputting string in a Unix
command line with new lines and white spaces. See
ht tp: / /en.wikipedia.org/wiki /Here_document .

Highcharts APIs

[�����]

The following is the screenshot of the e-mail which is sent:

The following is the screenshot of the attachment e-mail which arrived in my
e-mail account:

Chapter 7

[�����]

Selecting data points and adding plot lines
The next part is to implement the Show Range checkbox and the Show Point Value
button. The Show Range option displays plot lines along the highest and lowest
points in the chart, whereas Show Point Value displays a box with the value at the
bottom left-hand side if a point is selected. The following screenshot demonstrates
how both are enabled in the chart:

Although it is more natural for the Show Point Value
checkbox to show the selected point display, this will
become a callback implementation to every point select
event. Instead, we use a button here, so that we can
directly call the Chart .getSelectedPoints method.

Highcharts APIs

[�����]

Using Axis.getExtremes and Axis.addPlotLine
The Axis.getExtremes method not only returns the axis current minimum and
maximum range in display, but also the highest and the lowest values for the data
points. In here, we use the method to combine with Axis.addPlotLine function to
add a pair of plot lines along the y axis. The addPointLine routine expects a plot
OLQH�FRQÀJXUDWLRQ��,Q�WKLV�H[DPSOH�ZH�VSHFLI\�D�GDWD�ODEHO�DV�ZHOO�DV�DQ�id name,
such that we can remove lines at both high and low ends when the Show Range is
unchecked or plot lines need to be redisplayed with a new value. The following is
the code for the Show Range action:

 / / Show the highest and lowest range in the plot l ines.
 var showRange = funct ion(chart , checked) {
 i f (!chart .ser ies | | !chart .ser ies. length) {
 return;
 }

 / / Checked or not checked, we st i l l need to remove
 / / any exist ing plot l ines f irst
 chart .yAxis[0] . removePlotLine(' highest ') ;
 chart .yAxis[0] . removePlotLine(' lowest ') ;

 i f (!checked) {
 return;
 }

 / / Checked - get the highest & lowest points
 var extremes = chart .yAxis[0] .getExtremes() ;

 / / Create plot l ines for the highest & lowest points
 chart .yAxis[0] .addPlotLine({
 width: 2,
 label : {
 text : extremes.dataMax,
 enabled: t rue,
 y: -7
 },
 value: extremes.dataMax,
 id: ' highest ' ,
 zIndex: 2,
 dashStyle: ' dashed ' ,
 color : ' #33D685 '
 }) ;

 chart .yAxis[0] .addPlotLine({
 width: 2,
 label : {

Chapter 7

[�����]

 text : extremes.dataMin,
 enabled: t rue,
 y: 13
 },
 value: extremes.dataMin,
 zIndex: 2,
 id: ' lowest ' ,
 dashStyle: ' dashed ' ,
 color : ' #FF7373 '
 }) ;
 };

Using Chart.getSelectedPoints and
Chart.renderer methods
The Show Point Value button makes use of the Chart .getSelectedPoints method
to retrieve the data point that is currently selected. Note that this method requires the
series option al lowPointSelect �WR�EH�HQDEOHG�LQ�WKH�ÀUVW�SODFH��2QFH�D�GDWD�SRLQW�LV�
selected and the Show Point Value button is clicked, we use functions provided by
the Chart . renderer to draw a tooltip-like box showing the selected value. We can
use the method Renderer .path or Renderer . rect to draw the rounded box, then
Renderer . text for the data value.

Highcharts also supports multiple data point selection which can be done
by clicking on the left mouse button while holding the Ctrl key pressed.

Additionally, we use the Renderer .g routine to group the SVG box and value string
together and add the resulting group element into the chart. The reason for that is
that we can re-display the box with a new value by removing the old group object as
a whole instead of each individual element.

 $(' #showPoint ') .but ton() .cl ick(funct ion(evt) {
 / / Remove the point info box if exists
 chart . infoBox && (chart . infoBox =
 chart . infoBox.destroy()) ;

 / / Display the point value box if a data point
 / / is selected
 var selectedPoint = chart .getSelectedPoints() ;
 var r = chart . renderer;
 i f (selectedPoint . length) {
 chart . infoBox = r .g() ;
 r . rect(20, 255, 150, 30, 3) .at t r({

Highcharts APIs

[�����]

 stroke: chart .opt ions.colors[0] ,
 ' st roke-width ' : 2
 }) .add(chart . infoBox);

 / / Convert selected point UTC value to date str ing
 var tm = new Date(selectedPoint[0] .x) ;
 tm = tm.getFul lYear() + ' - ' +
 (tm.getMonth() + 1) + ' - ' + tm.getDate() ;
 r . text(tm + ' : ' + selectedPoint[0] .y,
 28, 275) .add(chart . infoBox);
 chart . infoBox.add() ;
 }
 }) ;

Highcharts' Renderer class also comes with other methods to draw simple SVG
shapes on the chart, such as arc, circle, image, rect , text , g, and path. For more
advanced shapes, we can use the path method, which accepts SVG path syntax
and has limited support on VML path. Moreover, the Renderer class can be used
independently from a chart, that is, we can call methods of the Renderer class
without creating a chart beforehand and add SVG contents to an HTML element.

var renderer = new Highcharts.Renderer($(' #container ')[0] ,
 200, 100);

This creates a Renderer object that allows us to create SVG elements inside the
container element with an area 200 pixels wide and 100 pixels high.

Exploring the series update
The series update is one of the most frequent tasks performed in charts. In this
VHFWLRQ��ZH�LQYHVWLJDWH�LW�LQ�KLJK�GHÀQLWLRQ��,Q�+LJKFKDUWV��WKHUH�DUH�several
approaches to update a series. Generally, we can update a series from a series or
data point level. Then the update method itself can be either an actual changing or
re-inserting the value. We will discuss each approach and create a comprehensive
example to experiment with all the techniques.

Chapter 7

[�����]

In order to compare each approach, we continue using stock market data but we will
change the user interface this time to be able to replay through the historical stock
price. The following is the screenshot of the example in action:

As we can see, there are multiple selection boxes to choose from: how many years
of historical stock price to replay, how many data points to update in each iteration,
and how long the wait is in between each update. Most importantly, we can
choose which series update method to be used, and it is interesting to observe the
behavioral difference between them, especially during the whole replay. This demo
is also available on my website at ht tp: / / joekuan.org/Learning_Highcharts/
Chapter_7/Example_2.html . I strongly recommend readers to give it a go. Before
ZH�ORRN�LQWR�HDFK�XSGDWH�DSSURDFK��OHW
V�ÀQG�RXW�KRZ�WR�FRQVWUXFW�WKLV�FRQWLQXRXV�
series update process.

Highcharts APIs

[�����]

Continuous series update
Once we enter a stock symbol and select the number of years of stock price to replay,
we can click on the Load Data button to retrieve the price data. Once the data arrives,
D�FRQÀUP�GLDORJ�LV�SRSSHG�XS�ZLWK�WKH�Start button to kick-start the process. The
following is the action code for the Start button:

 / / Create a named space to store the current user
 / / input f ield values and the t imeout id
 $.histStock = {};

 $(' #Star t ') .but ton() .cl ick(funct ion() {

 chart .showLoading("Loading stock pr ice . . . ") ;

 / / Remove old t imeout i f exists
 $.histStock. t imeoutID &&
 clearTimeout($.histStock. t imeoutID) ;

 var symbol =
 encodeURIComponent($(' #symbol ') .val() . toLowerCase()) ;
 var years = encodeURIComponent($(' #years ') .val()) ;

 / / Remember current user set t ings and ini t ial ize values
 / / for the run
 $.histStock = {
 / / Fi rst loop star t at the beginning
 offset : 0,
 / / Number of data pts to display in each i terat ion
 numPoints: 30,
 / / How long to wai t in each i terat ion
 wai t : parseInt($(' #updateMs ') .val() , 10) ,
 / / Which Highcharts method to update the series
 method: $(' #update ') .val() ,
 / / How many data points to update in each i terat ion
 ' update: ' parseInt($(' #updatePoints ') .val() , 10)
 };

 / / Clean up old data points from the last run
 chart .ser ies. length && chart .ser ies[0] .setData([]) ;

 / / Star t Ajax query to get the stock history
 $.getJSON(' . /histStock.php?symbol= ' + symbol +
 '&years= ' + years,
 funct ion(stockData) {

Chapter 7

[�����]

 / / Got the whole period of histor ical stock data
 $.histStock.name = stockData.name;
 $.histStock.data = stockData. rows;

 chart .hideLoading() ;
 / / Star t the chart refresh
 refreshSeries() ;
 }
) ;
 })

:H�ÀUVW�FUHDWH�D�YDULDEOH�histStock under the jQuery namespace, which is accessed
by various parts within the demo. The histStock variable holds the current user's
inputs and the reference to the refresh task. Any changes from the user interface
updates the $.histStock, hence the series update responds accordingly.

Basically, when the Start button is clicked, we initialize the $.histStock variable
and start an Ajax query with the stock symbol and number of years parameters.
Then when the stock price data returns from the query, we store the result into the
variable. We then call refreshSeries, which calls itself by the setting via a timer
URXWLQH��7KH�IROORZLQJ�FRGH�LV�WKH�VLPSOLÀHG�YHUVLRQ�RI�WKH�PHWKRG�

var refreshSeries = funct ion() {
 var i = 0, j ;

 / / Update the series data according to each approach
 swi tch ($.histStock.method) {
 case ' setData ' :

 break;
 case ' renewSeries ' :

 break;
 case ' update ' :

 break;
 case ' addPoint ' :

 break;
 }

 / / Shif t the offset for the next update
 $.histStock.offset += $.histStock.update;

 / / Update the jQuery UI progress bar

Highcharts APIs

[�����]

 / / Finished
 i f (i == $.histStock.data. length) {
 return;
 }

 / / Setup for the next loop
 $.histStock. t imeoutID =
 setTimeout(refreshSeries, $.histStock.wai t) ;
};

Inside the refreshSeries, it inspects the settings inside the $.histStock and
updates the series depending on the user's choice. Once the update is done, we
increment the offset value, which is at the start position for copying the stock result
data into the chart. If the counter variable i hits the end of the stock data, then it
simply exits the method. Otherwise, call the JavaScript timer function to set up the
next loop. The next goal is to review how each update method is performed.

Running the experiment
There are four techniques for updating the series data: Series.setData, Series.
remove/Chart .addSeries, Point .update, and Series.addPoint . We measure the
performance for all four techniques in terms of CPU usage. A CPU measurement tool
typeperf is running in the background in another window. Each method is timed for
replaying the stock prices for past one year along with 0.5 seconds of wait between
each update. We repeated the same run twice and took the average. The experiment
is repeated on a selection of browsers: Firefox, Chrome, Internet Explorer 8 and 9, and
Safari. Although IE 8 does not support SVG and only supports VML, it is important
to bring into the experiment because Highcharts' implementation is compatible with
,(����$OVR��,(��VWLOO�KDV�D�VLJQLÀFDQW�SUHVHQFH�LQ�WKH�EURZVHU�PDUNHW��2QH�WKLQJ�WKDW�ZH�
instantly notice is the same chart on IE8 is not as appealing as in SVG.

The whole experiment is running on a Windows 7 PC and
the hardware is 2 GB RAM Core 2 Duo 2.66 GHz and ATI
Radeon 4890 1 GB.
The browser versions are Firefox 16.0.1, Chrome 22.0.1129,
IE9 9.0.8112, Safari 5.1.7, and IE8 8.0.760.

In the following sections, each series update approach is explained and a
performance comparison is presented between the browsers. Readers must not
conclude the result as a guideline of the browser's general performance which
is derived from running a myriad of tests in a number of areas. What we are
experimenting here is only how Highcharts performs on each browser in terms
of SVG animations.

Chapter 7

[�����]

Applying a new set of data with Series.setData
We can apply a new set of data to an existing series using the
Series.setData method.

setData (Array<Mixed> data, [Boolean redraw])

The data can be either an array of one dimensional data, an array of x and y value
pairs, or an array of data point objects. Note that this method is the simplest form of
all the approaches, which doesn't provide any animation effect at all. Here is how we
use the setData function in our example:

 case ' setData ' :
 var data = [] ;

 / / Bui lding up the data array in the series opt ion
 for (i = $.histStock.offset , j = 0;
 i < $.histStock.data. length &&
 j < $.histStock.numPoints; i++, j++) {
 data.push([
 $.histStock.data[i] .date,
 $.histStock.data[i] .pr ice]) ;
 }

 i f (!chart .ser ies. length) {

 / / Insert the very f irst ser ies
 chart .addSeries({
 name: $.histStock.name,
 data: data
 }) ;
 } else {

 / / Just update the series wi th
 / / the new data array
 chart .ser ies[0] .setData(data, t rue);
 }
 break;

Highcharts APIs

[200]

With no animations, the whole replay becomes choppy. The following graph shows
the performance comparison on using the setData method across the browsers:

As setData has no animation effect, the method does not take as much CPU usage
as expected, except for IE8, which does not support SVG. The VML technology runs
rather slowly and that explains the higher CPU usage. Among the browsers, Chrome
has the lowest CPU usage (4.25 percent), the next lowest is Safari (4.79 percent),
and then Firefox. Out of the browsers, Firefox has the highest memory footprint,
whereas IE 9 consumed the least. Perhaps a slight surprise is that Safari has a better
performance than Firefox and is also very close to Chrome.

Chapter 7

[201]

Using Series.remove and Chart.addSeries to
reinsert series with new data
Alternatively, we can remove the whole series with the Series. remove method.
Then rebuild the series options with the data and reinsert a new series using
Chart .addSeries. The downside of this approach is that the internal index for the
default colors and point symbols are incremented, like we came across in the earlier
example. We can compensate for that by specifying the color and the marker options.
Here is the code for the addSeries method:

 case ' renewSeries ' :
 var data = [] ;
 for (i = $.histStock.offset , j = 0;
 i < $.histStock.data. length &&
 j < $.histStock.numPoints; i++, j++) {
 data.push([$.histStock.data[i] .date,
 $.histStock.data[i] .pr ice]) ;
 }
 / / Remove al l the exist ing series
 i f (chart .ser ies. length) {
 chart .ser ies[0] . remove() ;
 }

 / / Re-insert a new ser ies wi th new data
 chart .addSeries({
 name: $.histStock.name,
 data: data,
 color : chart .opt ions.colors[0] ,
 marker: {
 symbol : chart .opt ions.symbols[0]
 }
 }) ;
 break;

Highcharts APIs

[202]

In this experiment, we use the refresh rate for every half a second, which is
shorter than the time span of default animation. Hence, the series update appears
choppy, like in setData. However, if we change the refresh rate to 3 seconds or
more, then we can see the series being redrawn from the left-hand to the right-hand
side in each update.

The following graph shows the performance comparison on using the addSeries
method across the browsers:

Chapter 7

[203]

The memory consumption remains roughly the same as the previous test. Both IE8
and IE9 have higher CPU usages. The most unusual result is that Safari requires less
CPU usage compared to both Chrome and Firefox. We will investigate this further in
a later section.

Updating data points with Point.update
We can update individual data points with the Point .update method. The update
method has a similar prototype as the setData, which accepts a single value, an
array of x and y values, or a data point object. Each update call can be redrawn into
the chart with or without animation.

update ([Mixed opt ions] , [Boolean redraw] , [Mixed animat ion])

Highcharts APIs

[204]

Here is how we use the Point .update method; we traverse through each point
object and call its member function. In order to save CPU time, we set the redraw
parameter to false and call Chart . redraw after the last data point is updated:

 case ' update ' :
 / / Note: Ser ies can be already existed
 / / at star t i f we cl ick ' Stop ' and ' Star t '
 / / again
 i f (!chart .ser ies. length | |
 !chart .ser ies[0] .points. length) {
 / / Bui ld up the f irst ser ies
 var data = [] ;
 for (i = $.histStock.offset , j = 0;
 i < $.histStock.data. length &&
 j < $.histStock.numPoints; i++, j++) {
 data.push([
 $.histStock.data[i] .date,
 $.histStock.data[i] .pr ice]) ;
 }

 i f (!chart .ser ies. length) {
 chart .addSeries({
 name: $.histStock.name,
 data: data
 }) ;
 } else {
 chart .ser ies[0] .setData(data) ;
 }

 } else {
 / / Updat ing each point
 for (i = $.histStock.offset , j = 0;
 i < $.histStock.data. length &&
 j < $.histStock.numPoints; i++, j++) {
 chart .ser ies[0] .points[j] .update([
 $.histStock.data[i] .date,
 $.histStock.data[i] .pr ice] ,
 false);
 }
 chart . redraw() ;
 }
 break;

Chapter 7

[205]

Point .update animates each data point vertically; overall it gives a wavy effect as
the graph is progressively updated. Another difference in animation is the x axis
labels; the labels approach the axis line diagonally in Chart .addSeries, whereas
labels just shift horizontally in Point .update.

Highcharts APIs

[�����]

The following graph shows the performance comparison of the Point .update
method across the browsers:

The memory footprint remains roughly static across all the browsers. The CPU usage
in each browser is fractionally less than the last experiment, which indicates that
there are fewer animations.

Removing and adding data points with Point.
remove and Series.addPoint
Instead of updating each individual data point, we can use Point . remove to remove
data points within the series.data array and use Series.addPoint to add new
data points back into the series.

remove ([Boolean redraw] , [Mixed animat ion])
addPoint (Object opt ions, [Boolean redraw] , [Boolean shif t] ,
 [Mixed animat ion])

Chapter 7

[207]

As for the time series data, we can use addPoint alone with shif t parameter set to
t rue, which will automatically shift the series point array:

 case ' addPoint ' :
 / / Note: Ser ies can be already existed at
 / / star t i f we cl ick ' Stop ' and ' Star t ' again
 i f (!chart .ser ies. length | |
 !chart .ser ies[0] .points. length) {

 / / Bui ld up the f irst ser ies
 var data = [] ;
 for (i = $.histStock.offset , j = 0;
 i < $.histStock.data. length &&
 j < $.histStock.numPoints; i++, j++) {
 data.push([
 $.histStock.data[i] .date,
 $.histStock.data[i] .pr ice]) ;
 }

 i f (!chart .ser ies. length) {
 chart .addSeries({
 name: $.histStock.name,
 data: data
 }) ;
 } else {
 chart .ser ies[0] .setData(data) ;
 }

 / / This is different , we don ' t redraw
 / / any old points
 $.histStock.offset = i ;

 } else {

 / / Only updat ing the new data point
 for (i = $.histStock.offset , j = 0;
 i < $.histStock.data. length &&
 j < $.histStock.update; i++, j++) {
 chart .ser ies[0] .addPoint([
 $.histStock.data[i] .date,
 $.histStock.data[i] .pr ice] ,
 false, t rue) ;
 }
 chart . redraw() ;
 }
 break;

Highcharts APIs

[208]

The addPoint approach has a better overall display, in that all the data points
smoothly slide from the right-hand to the left-hand side and the labels are also
shifted horizontally.

The following graph shows the performance comparison of the Point .update
method across the browsers:

Chapter 7

[�����]

There is hardly any difference in the Point .update method in terms of both CPU
and memory usage.

Exploring SVG animations performance on browsers
So far we have seen the CPU cost increased with animations. However, the question
left unanswered is why Safari has lower CPU consumption than Chrome and
Firefox. A number of browser benchmark suites have been run on the test machine
WR�FRQÀUP�WKH�JHQHUDO�FRQVHQVXV�WKDW�)LUHIR[�DQG�&KURPH�EURZVHUV�KDYH�DQ�RYHUDOO�
better performance than Safari.

All browsers were benchmarked with SunSpider—ht tp: / /
www .webki t .org/perf /sunspider/sunspider .html ,
Google's V8 Benchmark suite – ht tp: / /v8.googlecode.
com/svn/data/benchmarks/v3/run.html , and
Peacekeeper – ht tp: / /peacekeeper . futuremark.com/ .

Nonetheless, there is one particular area where Safari has better performance than
WKH�RWKHU�EURZVHUV��ZKLFK�LV�69*�DQLPDWLRQV��DQG�WKLV�LV�UHÁHFWHG�LQ�RXU�SUHYLRXV�
experiments. In here, we use a benchmark test written by Cameron Adams, which
is designed to especially measure SVG animations with bouncing particles in frames
per second. The test (HTML5 versus Flash: Animation Benchmarking ht tp: / /www .
themaninblue.com/wr i t ing/perspect ive/2010/03/22/) was originally written
for comparing various HTML5 animation technologies against Flash. In here, we run
the SVG test with Chrome and Safari browsers; the following is a Safari screenshot
running with a 500 particles test:

Highcharts APIs

[210]

As for Chrome, the test is running at around 102 FPS. We repeat the assessment
with various numbers of particles between both browsers. The following graph
summarizes the performance difference in SVG animations:

As we can see, Safari manages higher frame rates with particles less than 2,000.
After that, the Safari performance starts to degrade in alignment with Chrome.

This leads to another inevitable question—why is there such a difference given
WKDW�ERWK�EURZVHUV�UXQ�ZLWK�WKH�VDPH�FRGH�EDVH�RI�ZHENLW"�,W�LV�GLIÀFXOW�WR�
pinpoint where the discrepancy is caused. However, one of the few differences
in both products is the JavaScript engines, which may affect that area, or the
minor GLIIHUHQFH�LQ�WKH�ZHENLW�YHUVLRQ��,Q�DGGLWLRQ��RWKHU�VSHFLÀF�69*�SHUIRUPDQFH�
tests in ht tp: / / jsperf .com are also run, in which Safari again has a higher score
than Chrome.

In the next section, we will see how Highcharts' performance corresponds to
data size.

Chapter 7

[211]

Comparing Highcharts' performance on
large datasets
2XU�ÀQDO�WHVW�LV�WR�REVHUYH�KRZ�+LJKFKDUWV�SHUIRUPV�LQ�large datasets. In this
experiment, we are going to plot scatter series across various data sizes and observe
the time taken to display the data. We chose to use the scatter series because when
there is a very large dataset in tens of thousands of samples, the user is likely to plot
only data points in the chart.

In this analysis, a simple HTML page with a chart and Stop Timing button is
constructed. The page is loaded with URL parameters to specify the dataset size.
We repeat the experiment with the same dataset size on each browser used in
previous benchmarks. Once the page is loaded on a browser, the dataset is randomly
generated. Then timing begins right before the chart object is constructed, then when
WKH�FKDUW�LV�ÀQDOO\�GLVSOD\HG�RQWR�WKH�VFUHHQ��WKH�Stop Timing button is clicked to
measure the time taken from chart creation to display, like the following screenshot
timing the display of 3,000 data points on Firefox browser:

Highcharts APIs

[212]

We don't measure the stop time when the chart is rendered
through the cal lback parameter in Highcharts.Chart
or events. load handler. This is because for large
datasets, there is a large time gap from the rendered chart
to the actual display, where this is negligible for the normal
size dataset. Hence relying on the chart rendered property
will result in a smaller time frame than the actual time taken.

The following graph illustrates Highcharts' performance on different browsers with
various dataset sizes:

The most obvious part from the previous graph is the skewed line from IE8
performance. As IE8 uses the obsolete VML, it is around 2.5 times slower than IE9
at 1,000 data points, and approximately just under 10 times slower at 15,000 data
SRLQWV��%HVLGHV��LW�LV�GLIÀFXOW�WR�WLPH�,(��UHOLDEO\�DIWHU�WKDW�SRLQW��DV�WKH�ORQJ�WLPLQJ�
process has on-going interruptions by warning dialogs.

As we can see, the general performance of SVG is going in one direction whereas
VML is almost heading north. To put it another way, this graph demonstrates the
scalability difference between the VML and SVG technologies.

Chapter 7

[213]

Among the SVG browsers, they all have very close performance ranges in the
region of 1,000 - 10,000 data points, which takes from 0.56 seconds to 2.99 seconds.
In terms of scalability, Safari on the Windows platform did not complete the whole
experiment. Beyond 10,000 samples, the timing for the browser becomes erratic.

Apart from Safari, all the browsers pretty much have linear performance as the
number of data points increases. Chrome performance starts to diverge at 50,000 data
points. Firefox overall is more scalable in terms of running Highcharts. All the three
browsers are capable of running further but this probably exceeds the users' needs.
For general usage, it is unlikely to plot above 1,000 data points. However, the most
important thing is that Highcharts runs pretty well across all the browsers for normal
use and is capable of going beyond this, if required.

Summary
In this chapter, we studied the Highcharts APIs from the class model to applying
them in applications. Then a comprehensive study was done on all the different
techniques to update a chart series in Highcharts and an experiment was carried
RXW�DQDO\]LQJ�WKH�GLIIHUHQFHV�LQ�WKHLU�SHUIRUPDQFHV��)LQDOO\�WKH�FKDSWHU�ÀQLVKHG�E\�
analyzing the speed in rendering data points with regards to different sizes of large
datasets and web browsers.

In the next chapter, we will look into Highcharts events handling, which is closely
related to Highcharts APIs.

Highcharts Events
In the last chapter we learned about the Highcharts API. In this chapter we will go
through Highcharts events handling. We will start the chapter by introducing the set
of events that are supported by Highcharts. Then we will build two web applications
to cover most of the events; each one explores a different set of events. Although the
applications are far from perfect and there is plenty of room for improvement, the
sole purpose is to aim at demonstrating how Highcharts events work. In this chapter
we will cover the following:

�� Launching an Ajax query with a chart load event
�� Activating the user interface with a chart redraw event
�� Selecting and unselecting a data point with point select and unselect event
�� Zooming the selected area with the chart selection event
�� Hovering over a data point with point mouseOver and mouseOut events
�� Using the chart click event to create plot lines
�� Launching a dialog with the series click event
�� Launching a pie chart with the series checkboxClick event
�� Editing the pie chart with the point click, update, and remove events

Highcharts Events

[�����]

Introducing Highcharts events
So far, we have gone through most of the +LJKFKDUWV�FRQÀJXUDWLRQV��KRZHYHU�WKHUH�
is one area not yet covered, which is event handling. Highcharts offers a set of event
options in several areas such as chart events, series events, and axis base events, and
they are triggered by API calls and user interactions with the chart.

+LJKFKDUWV�HYHQWV�FDQ�EH�VSHFLÀHG�WKURXJK�REMHFW�FRQÀJXUDWLRQ�ZKLOH�FUHDWLQJ�D�
FKDUW�RU�WKURXJK�$3,V�WKDW�DFFHSW�REMHFW�FRQÀJXUDWLRQV��VXFK�DV�Chart .addSeries,
Axis.addPlotLine, and Axis.addPlotBand.

An event object is passed by an event handler, which contains mouse information
DQG�VSHFLÀF�DFWLRQ�GDWD�UHODWHG�WR�WKH�HYHQW�DFWLRQ��IRU�H[DPSOH��event .xAxis[0]
and event .yAxis[0] are stored in the event parameter for the chart .events.cl ick
handler. Inside each event function, the ' this ' keyword can be used and refers to a
Highcharts component where the event function is based. For example, the ' this '
keyword in chart .events.cl ick refers to the chart object, and the ' this ' keyword
in plotOpt ions.series.events.cl ick refers to the series object being clicked.

The following is a list of Highcharts events:

�� chart .events: addSeries, cl ick, load, redraw, select ion

�� plotOpt ions.<series-type>.events: cl ick, checkboxCl ick, hide,
mouseOver, mouseOut , show

Alternatively, we can specify event options specifically to a series in the
series array, for example:
series[{ events: { cl ick: funct ion { . . . }, } }]

�� plotOpt ions.<series-type>.point .events: cl ick, mouseOver, mouseOut ,
remove, select , unselect , update

We can define point events for a specific series, as follows:
series[{ point : { events: { cl ick: funct ion()
{ . . . } }, . . . }]

As for defining events for a particular data point in a series, we
can specify them, as follows:
series[{ data: [{ events: { cl ick: funct ion()
{ . . . } }] , . . . }]

�� x/yAxis.events: setExtremes

�� x/yAxis.plotBands[x] .events and x/yAxis.plotLines[x] .events:
cl ick, mouseover, mousemove, mouseout

Chapter 8

[217]

The Highcharts online documentation provides a comprehensive reference and
plenty of mini examples; you are strongly recommended to refer to that. There is
not much point in repeating the same exercise. Instead, we will build two slightly
sizable examples to utilize most of the Highcharts events and demonstrate how
these events can work together in an application. Since the complete example code
can be too much to list in this chapter, only the relevant parts are edited and shown.
The full demo and source code can be found at ht tp: / / joekuan.org/Learning_
Highcharts/Chapter_8/Example_1.html .

Portfolio history example
This application basically extends from the historical stock chart in the previous
chapter with an additional investment portfolio feature. The frontend is
implemented with jQuery and jQuery UI, and the following events are covered
in this example:

�� chart .events: cl ick, load, redraw, select ion

�� plotOpt ions.series.points.events: mouseOver, mouseOut ,
select , unselect

�� xAxis/yAxis.plotLines.events: mouseover, cl ick

The following is the startup screen of the demo with the components labeled:

Highcharts Events

[218]

The application contains a pair of time series charts. The bottom chart is the top-level
graph, which shows the entire historic price movement and points to when company
shares are bought and sold. The top chart is the detail chart, which zooms in to the
ÀQHU�GHWDLOV�ZKHQ�D�VHOHFWHG�DUHD�LV�PDGH�LQ�WKH�ERWWRP�JUDSK�

As soon as the web application is loaded on to a browser, both charts are created.
7KH�WRS�OHYHO�FKDUW�LV�FRQÀJXUHG�ZLWK�D�ORDG�HYHQW��ZKLFK�DXWRPDWLFDOO\�UHTXHVWV�D�
stock historic price and portfolio history from the web server.

The following screenshot shows a graph after the top-level chart is autoloaded:

There are circular and triangular data points laid on top of the top-level chart; these
denote the trade history. The B symbol indicates when the shares have been bought,
whereas S�VLJQLÀHV�ZKHQ�WKH\�DUH�VROG��7KH�LQIRUPDWLRQ�EHORZ�WKH�WRS�OHYHO�FKDUW�LV�
the portfolio detail for the stock as of the current date.

If we click on one of these trade history points, the portfolio detail section is updated
WR�UHÁHFW�WKH�LQYHVWPHQW�KLVWRU\�DV�RI�WKH�VHOHFWHG�GDWH��0RUHRYHU�ZKHQ�ZH�VHOHFW�
an area, it zooms in and displays the stock price movement in the detail chart.
There are other features involved in event handling and we will discuss them in
the later sections.

Chapter 8

[�����]

Top-level chart
7KH�IROORZLQJ�LV�WKH�FRQÀJXUDWLRQ�FRGH�IRU�WKH�top-level chart (the bottom chart is
showing the entire historic price movement) and we store the chart object inside the
myApp namespace, as follows:

 $.myApp. topChart = new Highcharts.Chart({
 chart : {
 zoomType: ' x ' ,
 spacingRight : 15,
 renderTo: ' top-container ' ,
 events: {
 / / Load the defaul t stock symbol of
 / / the portfol io
 load: funct ion() { },

 / / The top level t ime series have
 / / been redrawn, enable the portfol io
 / / select box
 redraw: funct ion() { },

 / / Select ion - get al l the data points from
 / / the select ion and popluate into the
 / / detai l chart
 select ion: funct ion(evt) { },
 }
 },
 t i t le: { text : nul l },
 yAxis: {
 t i t le: { text : nul l },
 gr idLineWidth: 0,
 labels: { enabled: false }
 },
 tool t ip: { enabled: false },
 xAxis: {
 t i t le: { text : nul l },
 type: ' datet ime '
 },
 ser ies: [. . .] ,
 legend: { enabled: false },
 credi ts: { enabled: false }
 }) ;

7KHUH�LV�D�ORW�JRLQJ�RQ�LQ�WKLV�FRQÀJXUDWLRQ��7KH�FKDUW�LV�GHÀQHG�ZLWK�PRVW�RI�WKH�
features disabled, such as tooltip, title, legend, and y-axis label. More importantly,
WKH�FKDUW�LV�FRQÀJXUHG�ZLWK�D�zoomType option, which enables the chart to be
zoomable along the x-axis direction, hence we can use the select event. The series
DUUD\�LV�FRPSRVHG�RI�PXOWLSOH�VHULHV�WKDW�DOVR�FRQWDLQ�HYHQW�FRQÀJXUDWLRQV�

Highcharts Events

[220]

&RQVWUXFWLQJ�WKH�VHULHV�FRQ¿JXUDWLRQ�IRU�D�
top-level chart
,Q�WKH�VHULHV�DUUD\��PXOWLSOH�VHULHV�DUH�GHÀQHG�ZLWK�FORVH�DQG�open price, bought
and sold trade dates, and a hidden series for tracking mouse movement in the
detail chart:

 ser ies: [{
 / / Past closed pr ice series
 type: ' areaspl ine ' ,
 marker: { enabled: false },
 enableMouseTracking: false
 }, {
 / / This is the open pr ice series and never shown
 / / in the bot tom chart . We use i t to copy this
 / / to the detai l chart
 visible: false
 }, {
 / / Ser ies for date and pr ice when shares
 / / are bought
 type: ' scat ter ' ,
 al lowPointSelect : t rue,
 color : $.myApp.boughtColor ,
 dataLabels: {
 enabled: t rue,
 format ter : funct ion() { return 'B ' ; }
 },
 point : {
 events: { }
 }
 }, {
 / / Ser ies for date and pr ice when shares are sold
 type: ' scat ter ' ,
 al lowPointSelect : t rue,
 color : $.myApp.soldColor ,
 dataLabels: {
 enabled: t rue,
 format ter : funct ion() { return ' S ' ; }
 },
 point : {
 events: { }
 }
 }, {
 / / This is the t racker series to show a single
 / / data point of where the mouse is hovered on
 / / the detai l chart
 type: ' scat ter ' ,
 color : ' #AA4643 '
 }]

Chapter 8

[221]

7KH�ÀUVW�VHULHV�LV�WKH�KLVWRULF�VWRFN�SULFH�VHULHV�DQG�LV�FRQÀJXUHG�ZLWKRXW�GDWD�SRLQW�
markers. The second series is hidden and acts as a placeholder for historic open price
data in the detail chart. The third (bought) and fourth (sold) series are the scatter
series revealing the dates when shares have been traded. Both series are set with the
al lowPointSelect �RSWLRQ��VR�WKDW�ZH�FDQ�GHÀQH�WKH�select and unselect events in
the point .events�RSWLRQ��7KH�ÀQDO�VHULHV�LV�DOVR�D�VFDWWHU�VHULHV�WR�UHÁHFW�WKH�PRXVH�
movement in the detail chart using the mouseOver and mouseOut events, and we will
see how all these are implemented later on.

Launching an Ajax query with the chart load event
As mentioned before, once the top-level chart is created and loaded on to the
browser, it is ready to fetch the data from the server. The following is the chart's load
HYHQW�KDQGOHU�GHÀQLWLRQ�

 chart : {
 events: {
 load: funct ion() {
 / / Load the defaul t stock symbol of
 / / the portfol io
 var symbol = $(' #symbol ') .val() ;
 $(' #symbol ') .at t r(' disabled ' , t rue);
 loadPortfol io(symbol) ;
 },

:H�ÀUVW�UHWULHYH�WKH�YDOXH�IURP�WKH�My Portfolio selection box and disable
WKH�VHOHFWLRQ�ER[�GXULQJ�WKH�TXHU\�WLPH��7KHQ�ZH�FDOO�D�SUH�GHÀQHG�IXQFWLRQ��
loadPortfol io. The method performs several tasks, as follows:

1. Launch an Ajax call, $.getJSON, to load the past stock price and
portfolio data.

2. Set up a handler for the returned Ajax result which further executes the
following steps:

1. Hide the chart loading mask.
2. Unpack the returned data and populate it into series data using the

Series.setData method.
3. Update the data inside the Portfolio Detail section to show how

much the investment is worth as of the current date.

Highcharts Events

[222]

Activating the user interface with the chart
redraw event
Once the top-level chart is populated with data, we can then enable the My Portfolio
selection box in the page. To do that we can rely on the redraw event, which is
triggered by the Series.setData call in sub-step 2 inside step 2.

 redraw: funct ion() {
 $(' #symbol ') .at t r(' disabled ' , false);
 },

Selecting and unselecting a data point with the
point select and unselect events
The bought and sold series share the same events handling, the only differences
between them are just the color and the point marker shape. The idea is that when
the user clicks on a data point in these series, the Portfolio Detail section is updated
to show the investment detail for the stock as of the trade date. The following
VFUHHQVKRW�VKRZV�WKH�HIIHFW�DIWHU�WKH�ÀUVW�ERXJKW�WUDGH�SRLQW�LV�VHOHFWHG�

In order to keep the data point selected, we will use the al lowPointSelect option,
ZKLFK�DOORZV�XV�WR�GHÀQH�WKH�select and unselect events. The following is the
HYHQWV�FRQÀJXUDWLRQ�IRU�WKH�ERXJKW�DQG�VROG�VHULHV�

 point : {
 events: {
 select : funct ion() {
 updatePortfol io(this.x) ;
 },
 unselect : funct ion() {
 / / Only defaul t back to current t ime

Chapter 8

[223]

 / / por tfol io detai l when unselect ing
 / / i tself
 var selectPt =
 $.myApp. topChart .getSelectedPoints() ;
 i f (selectPt [0] .x == this.x) {
 updatePortfol io(new Date() .getTime()) ;
 }
 }
 }
 }

Basically, the select �HYHQW�KDQGOHU�FDOOV�D�SUH�GHÀQHG�IXQFWLRQ��updatePortfol io,
which updates the Portfolio Detail section based on the selected data point time—
this.x. The ' this ' keyword in the handler refers to the selected point object, where
x is the time value.

Unselecting the data point will call the unselect event handler. The preceding
implementation means that if the unselected data point (this.x) is the same as
the previously selected point, then it indicates the user has unselected the same
point, hence we want to show the portfolio detail as of the current date. Otherwise
do nothing because it means the user has selected another trade data point, hence
another select event call is made with a different date.

Zooming the selected area with the chart
selection event
The select ion event forms the bridge between the top-level chart and the detail
chart. When we select an area in the top-level chart, the selected area is highlighted
and the data is zoomed in the detail chart. This action triggers the select ion event
and the following is the cut-down code of the event handler:

 select ion: funct ion(evt) {
 / / Get the xAxis select ion
 var selectStar t = Math. round(evt .xAxis[0] .min) ;
 var selectEnd = Math. round(evt .xAxis[0] .max);

 / / We use plotBand to paint the selected area
 / / to simulate a selected area
 this.xAxis[0] . removePlotBand(' selected ') ;
 this.xAxis[0] .addPlotBand({
 color : ' rgba(69, 114, 167, 0.25) ' ,
 id: ' selected ' ,
 from: selectStar t ,
 to: selectEnd
 }) ;

Highcharts Events

[224]

 for (var i = 0;
 i < this.ser ies[0] .data. length; i++) {
 var pt = this.ser ies[0] .data[i] ;
 i f (pt .x >= selectStar t &&
 pt .x <= selectEnd) {
 selectedData.push([pt .x, pt .y]) ;
 }

 i f (pt .x > selectEnd) {
 break;
 }
 }

 / / Update the detai l ser ie
 var dSeries = $.myApp.detai lChart .ser ies[0];
 dSeries.setData(selectedData, false);

 / / Update the detai l chart t i t le & subt i t le
 $.myApp.detai lChart .setTi t le({
 text : $.myApp.stockName + " (" +
 $.myApp.stockSymbol + ")",
 style: { fontFami ly: ' palat ino, ser if ' ,
 fontWeight : ' bold ' }
 }, {
 text : Highcharts.dateFormat('%e %b %y ' ,
 selectStar t) + ' -- ' +
 Highcharts.dateFormat('%e %b %y ' ,
 selectEnd) ,
 style: { fontFami ly: ' palat ino, ser if ' }
 }) ;

 $.myApp.detai lChart . redraw() ;
 return false;
 }

There are several steps taken in the handler code. First, we extract the selected range
values from the handler parameters—evt .xAxis[0] .min and evt .xAxis[0] .max.
The next step is to make the selected area stay highlighted in the top-level chart. To
do that we create a plot band using this.xAxis[0] .addPlotBand over the same
area to simulate the selection. The ' this ' keyword refers to the top-level chart
REMHFW��7KH�QH[W�WDVN�LV�WR�JLYH�D�À[HG�id, so that we can remove the previous old
selection and highlight a new selection. Additionally, the plot band should have
the same color as the selection being dragged on the chart. All we need to do
is to assign the plot band color as the same as the default value of the chart .
select ionMarkerFi l l option.

Chapter 8

[225]

After that we copy the data within the selected range into an array and pass it to the
detail chart using Series.setData. Since we called the setData method a couple of
times, it is worth setting the redraw option to false to save resources and then call
the redraw method afterwards.

Finally, the most important step is to return false at the end of the function.
This tells Highcharts not to take the default action after the selection has been
made. Otherwise the whole top-level chart is redrawn and stretched (alternatively,
we can call event .preventDefaul t()).

The following is the screenshot of zooming and displaying the detail in another chart:

Highcharts Events

[�����]

Detail chart
The detail chart is simply a line chart showing the selected region from the top-level
FKDUW��7KH�FKDUW�LV�FRQÀJXUHG�ZLWK�D�WRROWLS�À[HG�DW�WKH�XSSHU�OHIW�FRUQHU�DQG�D�
number of events that we will discuss later.

 $.myApp.detai lChart = new Highcharts.Chart({
 chart : {
 showAxes: t rue,
 renderTo: ' detai l -container ' ,
 events: {
 cl ick: funct ion(evt) {
 / / Only al low to prompt stop order
 / / dialog i f the chart contains future
 / / t ime

 }
 },
 },
 t i t le: {
 margin: 10,
 text : nul l
 },
 credi ts: { enabled: false },
 legend: {
 enabled: t rue,
 f loat ing: t rue,
 ver t icalAl ign: ' top ' ,
 al ign: ' r ight '
 },
 ser ies: [. . .] ,
 / / Fixed locat ion tool t ip in the top lef t
 tool t ip: {
 shared: t rue,
 posi t ioner: funct ion() {
 return { x: 10, y: 10 }
 },
 / / Include 52 week high and low
 format ter : funct ion() { }
 },
 yAxis: {
 t i t le: { text : 'Pr ice ' }
 },
 xAxis: { type: ' datet ime ' }
 }) ;

Chapter 8

[227]

The following is a screenshot showing a data point being hovered over and the
tooltip being shown at the upper-left corner:

&RQVWUXFWLQJ�WKH�VHULHV�FRQ¿JXUDWLRQ�IRU�WKH�
detail chart
7KHUH�DUH�WZR�VHULHV�FRQÀJXUHG�LQ�WKH�GHWDLO�FKDUW��7KH�PDLQ�IRFXV�LV�WKH�ÀUVW�VHULHV�
ZKLFK�LV�WKH�VWRFN�FORVHG�SULFH��7KH�VHULHV�LV�GHÀQHG�without data point markers and
has ' crosshair ' as the cursor option, as we can see in the preceding screenshot.
In addition, the mouseOut and mouseOver�HYHQWV�DUH�GHÀQHG�IRU�WKH�GDWD�SRLQWV�WKDW�
create a marker to the tracker series in the top-level chart. We will go through these
HYHQWV�LQ�WKH�QH[W�VHFWLRQ��7KH�VHULHV�DUUD\�LV�GHÀQHG��DV�IROORZV�

 ser ies: [{
 marker: {
 enabled: false,
 states: {
 hover: { enabled: t rue }
 }
 },
 cursor: ' crosshair ' ,

Highcharts Events

[228]

 point : {
 events: {
 mouseOver: funct ion() { . . . },
 mouseOut : funct ion() { . . . }
 }
 },
 st ickyTracking: false,
 showInLegend: false
 }, {
 name: 'Open Pr ice ' ,
 marker: { enabled: false },
 visible: false
 }] ,

Hovering over a data point with the mouseOver and
mouseOut point events
When we move the mouse pointer along the series in the detail chart, the movement
LV�DOVR�UHÁHFWHG�LQ�WKH�WRS�OHYHO�FKDUW�ZLWKLQ�WKH�VHOHFWHG�DUHD��7KH�IROORZLQJ�
screenshot shows the tracker point (inverted triangle) in the top-level chart:

The inverted triangle indicates where we are browsing in the top-level chart. To do
that we will set up the mouseOut and mouseOver point events options in the detail
chart series, as follows:

 point : {
 events: {
 mouseOver: funct ion() {
 var ser ies = $.myApp. topChart .ser ies[4];
 ser ies.setData([]) ;
 ser ies.addPoint([this.x, this.y]) ;
 },

Chapter 8

[�����]

 mouseOut : funct ion() {
 var ser ies = $.myApp. topChart .ser ies[4];
 ser ies.setData([]) ;
 }
 }
 },

Inside the mouseOver handler, the ' this ' keyword refers to the hovered data point
object that the x and y properties which refer to the time and price values. Since both
top-level and detail charts share the same data type along both x and y axes, we
can simply add a data point into the tracker series in the top-level chart. As for the
mouseOut event, we reset the series by emptying the data array.

Applying the chart click event
In this section we are going to apply the chart click event to create a "stop order" for
investment portfolios. Stop order is an investment term for selling or buying a stock
ZKHQ�LW�UHDFKHV�WKH�SULFH�WKUHVKROG�ZLWKLQ�D�VSHFLÀHG�GDWH�WLPH�UDQJH�LQ�WKH�IXWXUH��
,W�LV�JHQHUDOO\�XVHG�WR�OLPLW�D�ORVV�RU�SURWHFW�D�SURÀW�

Notice that there is an empty space at the right-hand side of the top-level chart. In
fact, this is deliberately created for the next 30 days' range from the current date.
Let's highlight that area, so that the future date appears in the detail chart:

Highcharts Events

[230]

As we can see, the line series in the detail chart stops as soon as it hits the current
date. If we click on the future dates zone in the detail chart, a Create Stop Order
dialog box appears. The x, y position of the click in the chart is then converted into
date and price, which then populates the values into the dialog box. The following is
the screenshot of the dialog box:

7KH�H[SLU\�GDWH�DQG�SULFH�ÀHOGV�FDQ�EH�IXUWKHU�DGMXVWHG�LI�QHFHVVDU\��2QFH�WKH�Save
Order button is clicked, a stop order is created and a pair of x and y plot lines are
generated to mark in the chart. The following is a screenshot showing two stop
orders in the chart:

Chapter 8

[231]

Let's see how all these actions can be derived from the code. First the jQuery UI
dialog is created based on an HTML form declared in the page:

 <div id= ' dialog ' >
 <form>
 <f ieldset>
 <label for="expire">Expire at</ label>
 <input type=text name="expire" id="expire" size=9
>

 <select name= ' stopOrder ' id= ' stopOrder ' >
 <opt ion value= ' buy ' selected>Buy</opt ion>
 <opt ion value= ' sel l ' >Sel l</opt ion>
 </select>
 <label for="shares">no. of shares</ label>
 <input type="text" name="shares" id="shares" value=""
size=7 class="text ui-widget-content ui-corner-al l" />,
 <label for="price">when market pr ice reaches (in pences)</
label>
 <input type="text" name="price" id="price" value="" size=7
class="text ui-widget-content ui-corner-al l" />
 </f ieldset>
 </form>
 </div>

Highcharts Events

[232]

The cl ick�HYHQW�KDQGOHU�IRU�WKH�GHWDLO�FKDUW�LV�WKHQ�GHÀQHG��DV�IROORZV�

 cl ick: funct ion(evt) {

 / / Only al low to prompt stop order dialog
 / / i f the chart contains future t ime
 i f (!$.myApp.detai lChart . futureDate) {
 return;
 }

 / / Based on what we cl ick on the t ime, set
 / / input f ield inside the dialog
 $(' #expire ') .val(
 Highcharts.dateFormat("%m/%d/%y",
 evt .xAxis[0] .value)) ;
 $(' #pr ice ') .val(
 Highcharts.numberFormat(
 evt .yAxis[0] .value, 2)) ;

 / / Display the form to setup stop order
 $(' #dialog ') .dialog("open");
 }

7KH�ÀUVW�JXDUG�FRQGLWLRQ�LV�WR�VHH�ZKHWKHU�WKH�GHWDLO�FKDUW�FRQWDLQV�DQ\�IXWXUH�
date. If a future date exists, then it extracts the x and y values from the cl ick event
DQG�DVVLJQV�WKHP�LQWR�WKH�IRUP�LQSXW�ÀHOGV��$IWHU�WKDW�LW�FDOOV�WKH�M4XHU\�8,�GLDORJ�
method to lay out the HTML form into a dialog box and displays it.

7KH�IROORZLQJ�FRGH�VQLSSHW�VKRZV�KRZ�ZH�GHÀQH�WKH�jQuery UI dialog box and its
action buttons. The code is edited for readability:

 / / Ini t iate stop order dialog
 $("#dialog") .dialog({
 / / Dialog star tup configurat ion –
 / / dimension, modal , t i t le, etc
 ,
 but tons: [{
 text : "Save Order",
 cl ick: funct ion() {
 / / Check whether this dialog is cal led
 / / wi th a stop order id. If not , then
 / / assign a new stop order id
 / / Assign the dialog f ields into an
 / / object - ' order '

 / / Store the stop order
 $.myApp.stopOrders[id] = order;

Chapter 8

[233]

 / / Remove plot l ines i f already exist .
 / / This can happen if we modify a stop
 / / order point
 var xAxis = $.myApp.detai lChart .xAxis[0];
 xAxis. removePlotLine(id) ;
 var yAxis = $.myApp.detai lChart .yAxis[0];
 yAxis. removePlotLine(id) ;

 / / Setup events handl ing for both
 / / x & y axis plot l ines
 var events = {
 / / Change the mouse cursor to pointer
 / / when the mouse is hovered above
 / / the plot l ines
 mouseover: funct ion() { . . . },

 / / Launch modify dialog when
 / / cl ick on a plot l ine
 cl ick: funct ion(evt) { . . . }
 };

 / / Create the plot l ines for the stop
 / / order
 xAxis.addPlotLine({
 value: order .expire,
 width: 2,
 events: events,
 color : (order .stopOrder == ' buy ') ? $.myApp.
boughtColor : $.myApp.soldColor ,
 id: id,
 / / Over both l ine series and
 / / plot l ine
 zIndex: 3
 }) ;

 yAxis.addPlotLine({
 value: order .pr ice,
 width: 2,
 color : (order .stopOrder == ' buy ') ? $.myApp.
boughtColor : $.myApp.soldColor ,
 id: id,
 zIndex: 3,
 events: events,
 label : {

Highcharts Events

[234]

 text : ((order .stopOrder == ' buy ') ?
' SO-B by (' : ' SO-S by (') + Highcharts.dateFormat("%e %b %Y",
parseInt(order .expire)) + ') @ ' + order .pr ice,
 al ign: ' r ight '
 }
 }) ;

 $(' #dialog ') .dialog("close");
 }
 }, {
 text : "Cancel",
 cl ick: funct ion() {
 $(' #dialog ') .dialog("close");
 }
 }]
 }) ;

The dialog box setup code is slightly more complicated. In the Save Order button's
button handler, it performs several tasks, as follows:

1. It extracts the input values from the dialog box.
2. ,W�FKHFNV�ZKHWKHU�WKH�GLDORJ�ER[�LV�RSHQHG�ZLWK�D�VSHFLÀF�stop order id. If

not, then it assigns a new stop order id and stores the values with id into
$.myApp.stopOrders.

3. It removes any existing plot lines that match with id, in case we modify an
existing stop order.

4. It sets up the cl ick and mouseover events handling for both x- and y-axis
plot lines.

5. ,W�FUHDWHV�[�DQG�\�SORW�OLQHV�LQWR�WKH�GHWDLO�FKDUW�ZLWK�WKH�HYHQWV�GHÀQLWLRQV�
constructed in step 4.

One scenario with stop orders is that users may want to change or delete a stop
RUGHU�EHIRUH�WKH�FRQGLWLRQ�LV�IXOÀOOHG��7KHUHIRUH�LQ�VWHS����WKH�SXUSRVH�RI�WKH�cl ick
event on plot lines is for bringing up a modify dialog box. Additionally, we want to
change the mouse cursor to a pointer when hovering over the plot lines to show that
it is clickable.

Chapter 8

[235]

Changing the mouse cursor over plot lines with
mouseover event
To change the mouse cursor over the plot lines, ZH�GHÀQH�WKH�mouseover event
handler, as follows:

 mouseover: funct ion() {
 $.each(this.axis.plotLinesAndBands,
 funct ion(idx, plot) {
 i f (plot . id == id) {
 plot .svgElem.element .style.cursor =
 ' pointer ' ;
 return false;
 }
 }
) ;
 },

The ' this ' keyword contains an axis object where the hovered plot line belongs
to. Since there can be multiple plot lines in each axis, we need to loop through the
array of plot lines and plot bands that can be found in the plotLinesAndBands
property inside the axis object. Once we have found the target plot line by matching
id, we will dig inside the internal element and set the cursor style to ' pointer ' . The
following shows a screenshot of a mouse cursor hovered over the plot line:

Setting up a plot line action with the click event
The cl ick event for plot lines is to launch the Modify Stop Order dialog box for
a stop order:

 / / Cl ick on the prompt l ine
 cl ick: funct ion(evt) {
 / / Retr ieves the stop order object stored in
 / / $.myApp.stopOrders

Highcharts Events

[�����]

 $(' #dialog ') .dialog("opt ion",
 "stopOrderId", id) ;
 var stopOrder = $.myApp.stopOrders[id] ;

 / / Put the set t ings into the stop order form
 $(' #dialog ') .dialog("opt ion", "t i t le",
 "Modify Stop Order");
 $(' #pr ice ') .val(
 Highcharts.numberFormat(
 stopOrder .pr ice, 2)) ;

 $(' #stopOrder ') .val(stopOrder .stopOrder) ;
 $(' #shares ') .val(stopOrder .shares);
 $(' #expire ') .val(
 Highcharts.dateFormat("%m/%d/%y",
 stopOrder .expire)) ;

 / / Add a remove but ton inside the dialog
 var but tons =
 $(' #dialog ') .dialog("opt ion", "but tons");
 but tons.push({
 text : 'Remove Order ' ,
 cl ick: funct ion() {
 / / Remove plot l ine and stop order
 / / set t ings
 delete $.myApp.stopOrders[id] ;
 var xAxis =
 $.myApp.detai lChart .xAxis[0];
 xAxis. removePlotLine(id) ;
 var yAxis =
 $.myApp.detai lChart .yAxis[0];
 yAxis. removePlotLine(id) ;

 / / Set the dialog to or iginal state
 resetDialog() ;
 $(' #dialog ') .dialog("close");
 }
 }) ;

 $(' #dialog ') .dialog("opt ion",
 "but tons", but tons);

 $(' #dialog ') .dialog("open");
 }

Chapter 8

[237]

The cl ick event handler simply retrieves the stop order settings and puts the
values inside the Modify Stop Order dialog box. Before launching the dialog box,
add a Remove Order button into the dialog box which the button handler calls
removePlotLine with the plot line's id. The following is a screenshot of the Modify
Stop Order dialog box:

Stocks' growth chart example
Our next example is to demonstrate the following events:

�� chart .events: addSeries

�� plotOpt ions.series.events: cl ick, checkboxCl ick, legendItemCl ick

�� plotOpt ions.series.point .events: update, remove

Highcharts Events

[238]

Suppose we want to draft a long term investment portfolio based on the stocks' past
growth performance as a reference. The demo contains a chart started with two
series, Portfolio and Average growths, and a form to input stock symbols. Basically,
we enter a stock symbol in this demo and then a line series of stock growth is
inserted into the chart. So we can plot multiple stock yield trends and tweak their
proportion in our portfolio to observe how Average and Portfolio lines perform.
The following screenshot shows the initial screen:

Plot averaging series from displayed
stocks series
Let's query for two stocks and click on the Average legend to enable the series:

Chapter 8

[�����]

As expected, the Average line is plotted in between the two stock lines. Assuming
the future growth is similar to the past, this Average line projects the future growth
if we invest both stocks equally in our portfolio. Let's add another stock symbol into
the chart:

The new growth line generates a higher yield so that the Average line automatically
re-adjusts itself and shifts to the second line from the top. Let's see how it is
LPSOHPHQWHG��7KH�IROORZLQJ�LV�WKH�FKDUW�FRQÀJXUDWLRQ�FRGH�

 $.myChart = new Highcharts.Chart({
 chart : {
 renderTo: ' container ' ,
 showAxes: t rue,
 events: {
 addSeries: funct ion() { . . . }
 }
 },
 ser ies: [{
 visible: false,
 name: 'Portfol io ' ,
 color : $.colorRange.shif t() ,
 marker: { enabled: false },
 events: {

Highcharts Events

[240]

 legendItemCl ick: funct ion(evt) { . . . }
 }
 }, {
 name: 'Average ' ,
 events: {
 legendItemCl ick: funct ion(evt) { . . . }
 },
 color : $.colorRange.shif t() ,
 visible: false,
 marker: { enabled: false }
 }, {
 visible: false,
 type: ' pie ' ,
 point : {
 events: {
 cl ick: funct ion(evt) { . . . },
 update: funct ion(evt) { . . . },
 remove: funct ion(evt) { . . . }
 }
 },
 center : [' 13% ' , ' 5% '] ,
 size: ' 30% ' ,
 dataLabels: { enabled: false }
 }] ,
 t i t le: { text : ' Stocks Growth ' },
 credi ts: { enabled: false },
 legend: {
 enabled: t rue,
 al ign: ' r ight ' ,
 layout : ' ver t ical ' ,
 ver t icalAl ign: ' top '
 },
 yAxis: {
 t i t le: { text : 'Growth (%) ' }
 },
 xAxis: { type: ' datet ime ' }
 }) ;

The chart contains three series, Portfolio, Average, and a pie chart series, which is for
editing the portfolio distribution.

Chapter 8

[241]

When we hit the Add button with a stock symbol, the showLoading method is
called to put a loading mask in front of the chart, and then an Ajax connection is
established with the server to query the stock yield data. We implement the Ajax
handler by calling the addSeries function to insert a new series into the chart. Once
the addSeries event is triggered, it means that the data has returned and is ready to
plot. In this case we can disable the chart loading mask, as follows:

 chart : {
 ,
 events: {
 addSeries: funct ion() {
 this.hideLoading() ;
 }
 },
 ,

The following is the implementation of the Add button action:

 $(' #add ') .but ton() .on(' cl ick ' ,
 funct ion() {
 var symbol = $(' #symbol ') .val() . toLowerCase() ;
 $.myChart .showLoading() ;
 $.getJSON(' . /stockGrowth.php?symbol= ' + symbol +
 '&years= ' + $.numOfYears,
 funct ion(stockData) {
 / / Bui ld up the series data array
 var ser iesData = [] ;

 i f (!stockData. rows. length) {
 return;
 }

 $.symbols.push({
 symbol : symbol ,
 name: stockData.name
 }) ;

 $.each(stockData. rows,
 funct ion(idx, data) {
 ser iesData.push([
 data.date * 1000,
 data.growth]) ;
 }) ;

 $.myChart .addSeries({
 events: {
 / / Remove the stock series
 cl ick: { . . . },
 / / Include the stock into portfol io

Highcharts Events

[242]

 checkboxCl ick: { . . . }
 },
 data: ser iesData,
 name: stockData.name,
 marker: { enabled: false },
 st ickyTracking: false,
 showCheckbox: t rue,

 / / Because we can add/remove series,
 / / we need to make sure the chosen
 / / color used in the visible ser ies
 color : $.colorRange.shif t()
 }, false);

 updateAvg(false);
 $.myChart . redraw() ;
 } / / funct ion (stockData)
) ; / /getJSON
 }) ;

:H�EXLOG�D�VHULHV�FRQÀJXUDWLRQ�REMHFW�IURP�WKH�$MD[�UHWXUQHG�GDWD��:LWKLQ�WKLV�QHZ�
VHULHV�FRQÀJXUDWLRQ��ZH�VHW�WKH�showCheckbox option to t rue for a checkbox next to
WKH�OHJHQG�LWHP��$�FRXSOH�RI�HYHQWV�DUH�DOVR�DGGHG�LQWR�WKH�FRQÀJXUDWLRQ��cl ick and
checkboxCl ick, which are discussed later.

After the addSeries�PHWKRG�FDOO��ZH�WKHQ�FDOO�D�SUH�GHÀQHG�URXWLQH��updateAvg,
which only recomputes and redraws the Average line if it is on display.

5HFDOOLQJ�IURP�WKH�SUHFHGLQJ�$YHUDJH�VHULHV�HYHQWV
�GHÀQLWLRQ��we use the
legendItemCl ick event to capture when the Average series is clicked in the
legend box:

 ser ies: [{
 . . .
 }, {
 name: 'Average ' ,
 events: {
 legendItemCl ick: funct ion(evt) {
 i f (! this.visible) {
 updateAvg() ;
 }
 }
 },

The preceding code means that if the Average series is currently not in a visible state,
then the series is going to be visible after this handler returns. Hence it calculates the
average values and shows the series.

Chapter 8

[243]

Launching a dialog with the series click event
Instead of enabling or disabling a stock yield line by clicking on the legend item, we
may want to completely remove the series line. In this scenario we use the cl ick
event to do that, as follows:

 $.myChart .addSeries({
 events: {
 / / Launch a confirm dialog box to delete
 / / the series
 cl ick: funct ion() {
 / / Save the cl icked series into the dialog
 $("#dialog-confirm") .dialog("opt ion",
 "seriesIdx", this. index);
 $("#dialog-confirm") .dialog("opt ion",
 "seriesName", this.name);
 $("#removeName") . text(this.name);

 $("#dialog-confirm") .dialog("open");
 },
 / / Include the stock into portfol io
 checkboxCl ick: funct ion(evt) { . . . }
 },

 }) ;

7KH�FOLFN�DFWLRQ�ODXQFKHV�D�FRQÀUPDWLRQ�GLDORJ�ER[�IRU�UHPRYLQJ�WKH�VHULHV�IURP�WKH�
chart. We store the clicked series (the ' this ' keyword) information inside the dialog
box; the Remove button's button handler uses that data to remove the series and
recalculate the average series if it is shown. The following is the screenshot:

Highcharts Events

[244]

Launching a pie chart with the series
checkboxClick event
Inside the legend box, each checkbox is for including the stock into the portfolio. As
soon as the checkbox is checked, a pie chart appears in the upper-left corner showing
the distribution of the stock within the portfolio. Each slice in the pie chart shares the
same color with the corresponding stock line. The following screenshot shows three
growth lines and a portfolio pie chart equally distributed for each stock:

6LQFH�WKH�JURZWK�OLQH�VHULHV�LV�FRQÀJXUHG�ZLWK�WKH�showCheckbox option, we can
GHÀQH�WKH�checkboxCl ick event to launch a pie chart when the checkbox is checked:

 checkboxCl ick: funct ion(evt) {
 updatePie(this, evt .checked);
 }

Chapter 8

[245]

The updatePie function is called at several places in this demo, such as for removing
a series, when the legend checkbox is checked, and so on. The following is the
shortened version of the code:

 var updatePie = funct ion(seriesObj , checked) {
 / / Loop through the stock series. If checkbox
 / / checked, then compute the equal distr ibut ion
 / / percentage for the pie ser ies data
 for (i = $.pf loIdx + 1;
 i < $.myChart .ser ies. length; i++) {
 var insert = (i == index) ? checked : $.myChart .
ser ies[i] .selected;
 i f (insert) {
 data.push({
 name: $.myChart .ser ies[i] .name,
 y: parseFloat((100 / count) . toFixed(2)) ,
 color : $.myChart .ser ies[i] .color
 }) ;
 }
 }

 / / Update the pie chart ser ies
 $.myChart .ser ies[$.pf loIdx] .setData(data, false);
 $.myChart .ser ies[$.pf loIdx] .show() ;
 };

The preceding code snippet basically loops through the stock series array and checks
whether it is selected. If so, then it includes stock into the pie series in an equally
distributed manner. Then the pie chart is displayed if there are one or more entries.

Highcharts Events

[�����]

Editing the pie chart's slice with the point
FOLFN��XSGDWH��DQG�UHPRYH�HYHQWV
It is unlikely for an investment portfolio to have an equal distribution on all the
stocks. Therefore we enhance the example to modify portions within the pie chart.
When a slice in the pie chart is clicked, a dialog box pops up. This allows us to adjust
or remove the portion within the portfolio. The following screenshot shows this::

Chapter 8

[247]

The Update button in the Update Portfolio dialog box updates the pie chart slice
with the Point .update method, whereas the Remove button calls the Point . remove
PHWKRG��%RWK�FDOOV�WULJJHU�WKH�XSGDWH�DQG�UHPRYH�HYHQWV�UHVSHFWLYHO\��+HUH�ZH�GHÀQH�
the data point's click, update, and remove events inside the pie chart.

 ser ies: [{

 },
 visible: false,
 type: ' pie ' ,
 point : {
 events: {
 / / Br ing up the modify dialog box
 cl ick: funct ion(evt) {
 / / Store the cl icked pie sl ice
 / / detai l into the dialog box
 $(' #updateName ') . text(evt .point .name);
 $(' #percentage ') .val(evt .point .y) ;
 $(' #dialog-form ') .dialog("opt ion",
 "pieSl ice", evt .point) ;

 $(' #dialog-form ') .dialog("open");
 },
 / / Once the Update but ton is cl icked,
 / / the pie sl ice port ion is updated
 / / Hence, this event is t r iggered and the
 / / por tfol io ser ies is updated
 update: funct ion(evt) {
 updatePortfol io() ;
 },
 / / Pie sl ice is removed, unselect the series
 / / in the legend checkbox and update the
 / / por tfol io ser ies
 remove: funct ion(evt) {
 var ser ies = nameToSeries(this.name);
 ser ies && ser ies.select(false);
 updatePortfol io() ;
 }
 }
 }

Highcharts Events

[248]

The cl ick event function stores the clicked slice (point object) inside the modify
dialog box and launches it. Inside the dialog box the Update and Remove buttons'
button handlers then extract these stored point objects and call the pie chart. Use the
REMHFWV
�XSGDWH�RU�UHPRYH�PHWKRG�WR�UHÁHFW�WKH�FKDQJH�LQ�WKH�GLVSOD\HG�SLH�FKDUW��
This subsequently triggers point update or remove event handlers and calls the pre-
GHÀQHG�IXQFWLRQ��updatePortfol io, which recalculates the Portfolio series with
the new distribution among the included stocks. So let's update the distribution for
the best past performance stock to 80 percent ratio and the rest of the two stocks to
10 percent each. The Portfolio series automatically re-adjusts itself from the update
event, as shown in the following screenshot:

As we can see, the Portfolio series (second line from the top) has been weighted
towards the higher growth trend rather than in the middle of all the stock's pie
chart, like the Average series.

Summary
,Q�WKLV�FKDSWHU�ZH�FRYHUHG�WKH�ODVW�SDUW�RI�+LJKFKDUWV�FRQÀJXUDWLRQ³HYHQWV�
handling. We built two shares' portfolio applications using jQuery and jQuery
UI to demonstrate most of the Highcharts events.

In the next chapter we will take Highcharts into mobile devices with jQuery Mobile.

Highcharts and jQuery Mobile
Highcharts does not only work in desktop browsers but also supports mobile
platforms. In this chapter, we will explore how to deploy Highcharts into mobile
platforms with a web mobile framework, jQuery Mobile, which is built on top of
jQuery. A very brief introduction of jQuery Mobile is given. We will look into a
couple of areas that are crucial to understanding the basics of the mobile framework.
Then we will integrate Highcharts and jQuery Mobile by building a mobile
application using an Olympic 2012 medals table. We will demonstrate how to apply
mobile events such as swipe, rotation, and pinch to navigate through the charts.

�� Introducing jQuery Mobile
�� Understanding mobile page structure
�� Understanding page initialization
�� Linking between mobile pages
�� Integrating Highcharts and jQuery Mobile
�� Drilling down for data from one chart to another
�� Changing chart displays with touch actions—swipe, rotate, and pinch

$�VKRUW�LQWURGXFWLRQ�RI�M4XHU\�0RELOH
This chapter by all means is not a full tutorial for jQuery Mobile (or jQM), but it is a
quick-start guide for using it with Highcharts. JQuery Mobile is a web development
framework for mobile devices built on top of jQuery. It is designed to be compatible
across all mobile platforms and the UI look and feel emulate native mobile
DSSOLFDWLRQV��7KH�EHQHÀW�RI�WKDW�LV�ORZ�FRVW�GHYHORSPHQW�LQ�D�VLQJOH�VRXUFH�FRGH�
without the need for testing across all the mobile platforms and browsers.

+LJKFKDUWV�DQG�M4XHU\�0RELOH

[250]

At the time of writing, Version 1.2.0 is used in this book. Before we drill down
on how Highcharts can be integrated with jQM, a few important concepts need
to be understood.

Understanding a mobile page structure
The most important concept of jQM is to understand the structure of a mobile page,
which is not the same as a normal HTML page. A mobile page is constructed inside
an HTML <div>�ER[�ZLWK�D�M40�VSHFLÀF�DWWULEXWH��data-role= ' page ' , marked as a
boundary. In fact, the data-* syntax is Customer Data Attributes�GHÀQHG�LQ�+70/��
VWDQGDUG��7KLV�DOORZV�ZHE�GHYHORSHUV�WR�VWRUH�FXVWRP�GDWD�VSHFLÀF�WR�WKH�SDJH�RU�
application, which can easily access the data attribute values. For more information
on APIs for HTML visit ht tp: / /dev.w3.org/html5/spec/single-page.
html#custom-data-at tr ibute. Within a mobile page, normal HTML tags, such as
input, hyperlinks, select, and so on are used.

An HTML document can contain multiple mobile pages and links through anchor
and the id attribute. An anchor is the same as a normal HTML anchor (for example,
#chart). The framework resolves the anchor reference and retrieves a mobile page
with matching id attribute, which has the following syntax:

<div data-role="page" id="chart">

The following is an example of a single mobile page in an HTML document:

<html>
<head>
 <t i t le>My Page</ t i t le>
 <meta name="viewport"
 content="width=device-width, ini t ial-scale=1,
 maximum-scale=1, user-scalable=0">
 <!-- CDN loading of jQuery and jQM -->
 <l ink rel="stylesheet"
 href="ht tp: / / . . . / jquery.mobi le-1.2.0.min.css" />
 <script
 src="ht tp: / / . . . /1.7.1/ jquery.min. js"></script>
 <script
 src="ht tp: / / . . . / jquery.mobi le-1.2.0.min. js"></script>
</head>
<body>
 <div data-role="page">
 <div data-role="header">
 <h1>jQuery Mobi le</h1>

Chapter 9

[251]

 </div><!-- /header -->
 <div data-role="content">

 </div>
 </div><!-- /page -->
</body>
</html>

Depending on the purpose of the mobile application, all the pages can be built into
a single HTML document, or they can exist in separate documents. One important
DVSHFW�LV�WKDW�LI�PXOWLSOH�PRELOH�SDJHV�DUH�GHÀQHG�ZLWKLQ�D�GRFXPHQW��WKH�ÀUVW�
page in the <body> tag is always loaded on the screen. In jQM, a page is generally
composed of head and content, optionally a footer and navigation bar. Each
component also has a <div> box with data-role to indicate the type of component
within a mobile page. The following code shows how multiple mobile pages in a
document are loaded:

<div data-role="page" >
 <div data-role="header">
 <h1>jQuery Mobi le</h1>
 <a href="#config" data-rel= ' dialog '
 data- icon="gear">Opt ions
 </div><!-- /header -->
 <div data-role="content">

 </div>
</div><!-- /page -->

<!-- Page for the opt ion dialog -->
<div data-role="page" id= ' config ' >
 <div data-role="header">
 <h1>Config</h1>
 </div><!-- /header -->

 <div data-role="content">
 <a href="#" data-role="but ton"
 data-rel="back" >Cancel
 </div>
</div><!-- /page -->

+LJKFKDUWV�DQG�M4XHU\�0RELOH

[252]

As we can see, there are two <div> boxes with the data-role= ' page ' attribute. The
ÀUVW�<div> box is the same as the previous example with an additional Opt ions
link button, which redirects to the second mobile page, id= ' config ' . The
attribute data- icon="gear" decorates the button with a gear icon provided by the
framework. For the list of icons visit ht tp: / / jquerymobi le.com/demos/1.2.0/
docs/but tons/but tons-icons.html . When the button is pressed, it will open the
second page as a modal dialog box because of the data-rel= ' dialog ' attribute.
7KH�IROORZLQJ�VFUHHQVKRW�VKRZV�WKH�YLHZ�RI�WKH�ÀUVW�PRELOH�SDJH�DSSHDULQJ�RQ�
an iPhone:

Understanding page initialization
In this section, we will learn the concept of why we don't use the traditional DOM
ready method to run initialization code for mobile pages. Suppose a page content
requires some sort of initialization, using the traditional DOM ready method, $. ready,
that can have an undesired effect. This is because the $. ready method runs as soon as
all the DOMs inside the document are loaded. In other words, we have no control over
when to run the page initialization code, if it is inside the DOM ready handler.

Chapter 9

[253]

+RZHYHU��M40�SURYLGHV�D�VSHFLÀF�HYHQW��pageini t , catered for this scenario. All we
need to do is to assign an id value inside the <div data-role= ' page ' > markup,
WKHQ�GHÀQH�WKH�pageini t event handler for that id value. Whenever a page is
going to be initialized for the display, this event is triggered. Note that the $. ready
method is still going to be called, but we just don't use it in jQM. To demonstrate this
concept, let us use the previous multi-page example with an additional $. ready call:

 <script type="text / javascript">
 $(' #main_page ') . l ive(' pageini t ' , funct ion() {
 aler t(' jQuery Mobi le: pageini t for Main page ') ;
 }) ;

 $(' #config ') . l ive(' pageini t ' , funct ion() {
 aler t(' jQuery Mobi le: pageini t for Config page ') ;
 }) ;

 $(document) . ready(funct ion() {
 aler t(' jQuery ready ') ;
 }) ;
 </scr ipt>
 </head>
 <body>
 <!-- MAIN PAGE -->
 <div data-role="page" id= 'main_page ' >
 <div data-role="header">
 <h1>jQuery Mobi le</h1>
 <a href="#config" data-rel= ' dialog '
 data- icon="gear"
 class= ' ui-btn-r ight ' >Opt ions
 </div><!-- /header -->

 <div data-role="content" id= ' ' >
 </div>
 </div><!-- /page -->

 <!-- CONFIG PAGE -->
 <div data-role="page" id= ' config ' >
 <div data-role="header">
 <h1>Config</h1>
 </div><!-- /header -->

 <div data-role="content">
 <a href="" data-role="but ton"
 data-rel="back" >Cancel
 </div>
 </div><!-- /page -->

+LJKFKDUWV�DQG�M4XHU\�0RELOH

[254]

7KHUH�DUH�WZR�PRELOH�SDJHV�GHÀQHG�LQ�WKLV�H[DPSOH��main_page and config. Each
mobile page is tied to its pageini t event handler. With the $. ready method, we
can observe the call sequence with other pageini t events. :KHQ�ZH�ÀUVW�ORDG�WKH�
document to the browser, we see the following screenshot:

5HPHPEHU�WKDW�M40�DOZD\V�GLVSOD\V�WKH�ÀUVW�SDJH�LQ�WKH�+70/�ERG\��7KDW�PHDQV�
the pageini t event for main_page�LV�ÀUHG�DV�VRRQ�DV�WKH�'20�IRU�WKH�main_page
is fully loaded and initialized for the display. It is also important to understand that
at this point of execution, the DOM for the subsequent config page is not loaded
yet. When we touch the OK button, the execution resumes and the DOM for the
config page is then loaded. Hence all the DOMs in the document are loaded and the
$. ready method is then called, which shows the second alert message as shown in
the following screenshot:

Chapter 9

[255]

When we touch the OK button, the alert box disappears and the control resumes
back to the browser. Now if we touch the Options button at the top right-hand
corner, the config dialog page is initialized and displayed on the screen. Hence
the pageini t handler for the config page is called.

+LJKFKDUWV�DQG�M4XHU\�0RELOH

[�����]

Linking between mobile pages
The second important concept in jQM is how the mobile pages are being linked
together. Understanding this concept can help us to design a web mobile application
ZLWK�D�ÁXLG�XVHU�H[SHULHQFH��,Q�M40��WKHUH�DUH�WZR�ZD\V�WR�ORDG�DQ�H[WHUQDO�PRELOH�
page: HTTP and Ajax. Depending on how we set the data- attribute, it interprets
the href value and decides which way to load a mobile page. By default, apart from
WKH�ÀUVW�GRFXPHQW�ORDG�ZKLFK�LV�D�QRUPDO�+773�WUDQVIHU��WKH�PRELOH�SDJH�LV�ORDGHG�
through Ajax. The following block diagram explains how multiple mobile page
blocks are managed within a document:

When a mobile page invokes another mobile page, the jQM framework basically
parses the href value. Since this is an anchor reference, it indicates that this is an
internal mobile page block. The framework locates the page block from the current
DOM by matching the id value. It then initializes and renders the page which also
triggers the pageini t event for page B as shown in the previous block diagram.

Suppose we have two separate HTML documents, a button in one page is referring
to another document. The following block diagram describes the scenario:

Chapter 9

[257]

In this case, we add an attribute, data-ajax="false" (for the sake of a simpler
approach on managing JavaScript code), to tell jQM that this button requires a
document load instead of a background Ajax load. This is important because
otherwise the pageini t �KDQGOHU�FRGH��RU�DQ\�-DYD6FULSW�ÀOH��LQVLGH�WKH�<script>
tag will not be loaded for the new mobile page, B.html.

JavaScript code can be embedded inside a <script> tag
within a mobile page block and get executed. The downside
of this approach is that it requires more code management,
as each page block has its own pageini t handler code.

There is an alternative way to load external mobile page in Ajax, but we will leave
LW�KHUH��7KLV�LV�PRUH�WKDQ�VXIÀFLHQW�WR�LPSOHPHQW�D�VLPSOH�PRELOH�ZHE�DSSOLFDWLRQ��
Readers can learn more from the jQuery Mobile documentation.

+LJKFKDUWV�DQG�M4XHU\�0RELOH

[258]

Highcharts in touch screen environments
The good thing with Highcharts is that it works perfectly well on both desktop
browsers and web mobile environments without requiring any change of code.
The only part that needs slight consideration is the events handling because mobile
devices are all touch screen based and that means the mouse cursor is invisible.

In Highcharts, all the mouse hover events can still be triggered in touch devices, even
WKRXJK�WKH�PRXVH�FXUVRU�LV�QRW�VKRZQ��)RU�LQVWDQFH��VXSSRVH�ZH�GHÀQH�D�VHULHV�ZLWK�
the mouseOut , mouseOver, and cl ick events handling. If we touch the series, both
the mouseOver and cl ick events are triggered. However, if we touch another series
causing the previous selected series to be unselected, a mouseOut �HYHQW�IRU�WKH�ÀUVW�
VHULHV�LV�ÀUHG��1HHGOHVV�WR�VD\��WKH�VHTXHQFH�RI�HYHQWV�ZRXOG�EH�GLIIHUHQW�ZLWK�D�UHDO�
pointing device. In general, we should refrain from using any mouse hover events in
touch screen based devices.

In the next section we will learn how to integrate jQM with Highcharts, such as
applying touch events to charts, using the chart cl ick events to launch another
chart and mobile page, and so on.

,QWHJUDWLQJ�+LJKFKDUWV�DQG�M4XHU\�0RELOH�
using an Olympic medals table application
In this section we will build a mobile application for browsing the results of the
Olympic 2012 medals table. This application is only tested on iPhone and iPad.
The startup screen provides four menus for looking up the results as shown in
the following screenshot:

Chapter 9

[�����]

The page is made up of a list of four hyperlinks referring to other pages, as shown in
the following code:

 <head>
 <!-- CDN load of Highcharts, jQuery and jQM -->

 </head>
 <body>
 <div data-role="page">
 <div data-role="header">
 <h1>London Olympic 2012 </h1>
 </div><!-- /header -->

 <div data-role="content">
 <ul data-role="l istview" data- inset="true">
 <l i><a href=". /gold.html"
 data-ajax="false" >Top 10 countr ies by gold</ l i>
 <l i><a href=". /medals.html"
 data-ajax="false" >Top 10 countr ies by medals</
l i>
 <l i>A-Z countr ies</ l i>
 <l i>A-Z olympians</ l i>

 </div>
 </div><!-- /page -->
 </body>

So when the Top 10 countries by gold button is clicked, the gold.html �ÀOH�LV�+773�
ORDGHG��QRW�$MD[��EHFDXVH�ZH�GHÀQH�data-ajax="false". Since it is an HTTP load,
the whole page, gold.html , is loaded onto the browser as well as everything within
the <script> tags that are being executed.

Loading up the gold medals page
The following is the content of the gold.html �ÀOH�

 <head>
 <!-- CDN load of Highcharts, jQuery and jQM -->

 <script type="text / javascript" src="common. js"></script>
 <script type="text / javascript" src="gold. js"></script>
 </head>
 <body>
 <div data-role="page" id= ' gold_chart ' >
 <div data-role="header">

+LJKFKDUWV�DQG�M4XHU\�0RELOH

[�����]

 <a href="olympic.html" data- icon="home"
 data- iconpos="notext">Home
 <h1>London Olympic 2012 - Top 10 countr ies by gold</h1>
 <a href="#opt ions" data-rel= ' dialog '
 data- icon="gear" id= ' opt ions ' >Opt ions
 </div><!-- /header -->

 <div data-role="content">
 <div id= ' chart_container ' ></div>
 </div>
</div><!-- /page -->

<!-- opt ions dialog -->
<div data-role="page" id= ' opt ions ' >

</div>
</body>

Since this whole HTML document is HTTP loaded onto the browser, the common.
js and gold. js�ÀOHV�DUH�DOVR�ORDGHG��7KH�ÀOH�common. js contains common routine
code shared in the demo such as device detection, orientation detection, chart
creation, and so on. The gold. js�ÀOH�FRQWDLQV�WKH�pageini t handler code for all the
mobile pages in the gold.html �ÀOH��$V�WKH�PRELOH�SDJH�EORFN��gold_chart , is the
ÀUVW�GHÀQHG�EORFN�LQ�WKH�GRFXPHQW��LW�LV�DXWRPDWLFDOO\�ORDGHG�DQG�UHQGHUHG�WR�WKH�
display, hence the pageini t event for the gold_chart page block is triggered.

Detecting device properties
For detecting mobile devices, the technique ranges from string matching of the
navigator .userAgent option, jQuery.support , jQuery.browser (deprecated), CSS
media queries, to a third-party plugin such as Modernizr; see ht tp: / /modernizr .
com/ for details. However, there is no standard way of doing so. Perhaps it is due
to the diverse requirements for compatibility checks. It is beyond the scope of this
book to debate the merits of each technique. For this demo, all we are interested in is
the difference in screen size, that is if there is more space in the display (that is tablet
devices) then we display the full country name in the charts instead of the country
code for smaller devices (touch phones). We assume the following technique is
VXIÀFLHQW�WR�GLIIHUHQWLDWH�EHWZHHQ�SKRQH�DQG�WDEOHW�GHYLFHV�

funct ion getDevice() {
 return ($(window) .width() > 320) ? "tablet" : "phone";
}

Chapter 9

[�����]

The $(window) .width property returns the width of the device in pixels regardless
of the device orientation. As for getting the current device orientation, we have the
following method:

funct ion getOr ientat ion() {
 return (window. innerHeight /window. innerWidth) > 1 ?
 ' por trai t ' : ' landscape ' ;

}

Plotting a Highcharts chart on mobile device
The following is the pageini t handler code for the gold_chart mobile page:

$(' #gold_chart ') . l ive(' pageini t ' ,
 funct ion() {
 var device = getDevice() ;

 / / current or ientat ion
 var or ientat ion = getOr ientat ion() ;

 / / Setup the point cl ick events for al l the
 / / country medal charts – used by plotGoldChart method
 var pointEvt = {
 events: {
 cl ick: funct ion(evt) { . . . }
 }
 };

 / / Swi tch between column and pie chart
 $(' #chart_container ') .on(' swipelef t ' ,
 funct ion(evt) { . . . }) ;

 $(' #chart_container ') .on(' swiper ight ' ,
 funct ion(evt) { . . . }) ;

 / / Swi tch between column and bar chart on
 / / smal ler display
 $(document) .on(' or ientat ionchange ' ,
 funct ion(evt) { . . . }) ;

 / / General method for plot t ing gold medal chart
 / / Used by dialog box also to toggle chart opt ions
 / / such as column stacking, labels etc
 $.olympicApp.plotGoldChart = funct ion(chart , opt ions) {

 };

+LJKFKDUWV�DQG�M4XHU\�0RELOH

[�����]

 / / Create and display Highcharts for gold medal chart
 $.olympicApp.goldChart = createChart({
 device: device,
 or ientat ion: or ientat ion,
 load: $.olympicApp.plotGoldChart ,
 type: (or ientat ion == ' landscape ') ?
 ' bar ' : ' column ' ,
 / / legend and t i t le set t ings specif ic

 }) ;
 }
) ;

The touch events such as swipeleft, swiperight, and orientat ionchange will be
discussed later on. The event handler, pointEvt, drills down further to another chart
when the user taps on a country bar in the gold medal chart. We will also explore this
LQWHUDFWLRQ�ODWHU�RQ��/HW
V�ÀUVW�IRFXV�RQ�WKH�ODVW�SDUW�RI�WKH�FRGH��ZKLFK�FUHDWHV�WKH�FKDUW��
The createChart method is a general routine to create a Highcharts graph, which has
the common options shared by all the chart mobile pages, for example the renderTo
option is always set to chart_container, which is inside the data-role= ' content '
attribute. The following code shows the createChart implementation:

 / / Main rout ine for creat ing chart
 funct ion createChart(opt ions) {

 / / Based on the device display and current or ientat ion
 / / Work out the spacing opt ions, labels or ientat ion
 return new Highcarts.Chart({
 chart : {
 renderTo: ' chart_container ' ,
 type: opt ions. type,
 events: {
 load: funct ion(chart) {
 / / Execute the page general plot rout ine
 opt ions. load &&
 opt ions. load(chart , opt ions);
 }
 },
 spacingLeft : ,

 },
 t i t le: { text : opt ions. t i t le },
 xAxis: {
 labels:
 },

 }) ;
 }

Chapter 9

[�����]

1RWH�WKDW�WKHUH�LV�QR�VHULHV�GHÀQHG�LQ�WKH�opt ions parameter and the opt ions.
load property is set up to call the plotGoldChart function once the chart is
created and loaded into the browser. The following code snippet is the part of the
plotGoldChart function:

 / / chart is the target chart object to apply new set t ings,
 / / opt ions is an object containing the new set t ings
 $.olympicApp.plotGoldChart =

 funct ion(chart , opt ions) {

 / / Get the top 10 countr ies wi th the
 / / most gold medals
 $.getJSON(' . /olympic.php ' ,
 { order: ' gold ' , num: 10 },

 funct ion(resul t) {

 var device = getDevice() ;

 / / Remove any series in the chart i f exists

 / / If display pie chart ,
 / / then we only plot the gold medals series
 i f (opt ions && opt ions. type == ' pie ') {
 var goldOpt = {
 data: [] ,
 point : pointEvt ,
 type: ' pie ' ,
 dataLabels: { . . . }
 };
 $.each(resul t . rows,
 funct ion(idx, data) {
 goldOpt .data.push({

 / / If device is phone,
 / / set short country labels
 / / otherwise ful l names
 name: (device === ' phone ') ?
 data.code : data.country,
 y: data.gold,
 color : pieGoldColors[idx]
 }) ;
 }) ;
 chart .addSeries(goldOpt , false);

+LJKFKDUWV�DQG�M4XHU\�0RELOH

[�����]

 / / Disable opt ion but ton for pie chart
 $(' #opt ions ') .addClass(' ui-disabled ') ;

 } else {
 / / Sor t ing out chart opt ion - stacking,
 / / dataLabels i f specif ied in the opt ion
 / / parameters
 var dataLabel = . . . ;
 var stacking = . . . ;
 var bronzeOpt = {
 data: [] , name: 'Bronze ' ,
 color : ' #BE9275 ' ,
 stacking: stacking,
 dataLabels: dataLabel ,
 point : pointEvt

 };
 var si lverOpt = {
 data: [] , name: ' Si lver ' ,
 color : ' #B5B5B5 ' ,
 stacking: stacking,
 dataLabels: dataLabel ,
 point : pointEvt
 };
 var goldOpt = {
 data: [] ,
 name: 'Gold ' ,
 color : ' #FFB400 ' ,
 point : pointEvt ,
 stacking: stacking,
 dataLabels: dataLabel
 };
 var category = [] ;

 $.each(resul t . rows,
 funct ion(idx, data) {
 / / Display country code on phone
 / / otherwise name

 category.push((device === ' phone ') ?
 data.code : data.country) ;
 goldOpt .data.push(data.gold) ;
 si lverOpt .data.push(data.si lver) ;
 bronzeOpt .data.push(data.bronze);
 }) ;

 chart .xAxis[0] .setCategories(category);
 chart .addSeries(bronzeOpt , false);
 chart .addSeries(si lverOpt , false);
 chart .addSeries(goldOpt , false);

Chapter 9

[�����]

 / / Enable the opt ion but ton for the
 / / column chart
 $(' #opt ions ') . removeClass(' ui-disabled ') ;
 }
 chart . redraw() ;
 }) ; / / funct ion(resul t)
 }; / / funct ion(chart , …

The plotGoldChart method is a general routine to plot a series into an existing
chart. The opt ions�SDUDPHWHU�LV�D�FRQÀJXUDWLRQ�REMHFW�ZLWK�QHZ�VHWWLQJV�WR�EH�
applied to the chart. First, the function invokes an Ajax call, olympic.php, to get the
list of countries with the most gold medals. Upon the returned results, the handler
function examines the opt ions parameter for series type, device orientation, and
RWKHU�ÀHOGV��VWDFNLQJ�DQG�GDWD�ODEHOV�IURP�WKH�config dialog, which we will discuss
later). Then it creates the chart based on the settings. If type property is column, then
we create three column series as Gold, Si lver, and Bronze with the point cl ick
HYHQW�FRQÀJXUHG��,I�WKH�type value is pie then it creates a single pie series of gold
medals with a gradual change of colors and data labels.

So when the gold_chart �SDJH�LV�ÀUVW�ORDGHG��D�FROXPQ�chart is created and displayed.
The following screenshot shows the initial column chart in portrait mode:

+LJKFKDUWV�DQG�M4XHU\�0RELOH

[�����]

If we touch the legend items to display number of silver and bronze medals, the
chart looks like the following screenshot:

6ZLWFKLQJ�JUDSK�RSWLRQV�ZLWK�WKH�M4XHU\�
Mobile dialog box
The Options button in the top right-hand corner is only enabled if the current
display chart is a column chart. It launches an option dialog box for switching stack
column and data labels. The following code is for the mobile page for the dialog box:

<div data-role="page" id= ' opt ions ' >
 <div data-role="header">
 <h1>Config</h1>
 </div><!-- /header -->

 <div data-role="content">
 <label for="stacking">Stacking:</ label>
 <select name="stacking" id="stacking"
 data-role="sl ider">

Chapter 9

[�����]

 <opt ion selected="selected">Off</opt ion>
 <opt ion>On</opt ion>
 </select>

 <label for="dataLabel">Show Values:</ label>
 <select name="dataLabel" id="dataLabel"
 data-role="sl ider">
 <opt ion selected="selected">Off</opt ion>
 <opt ion>On</opt ion>
 </select>

 <a href="#" data-role="but ton"
 data-rel="back" id= ' updateChart ' >Update
 <a href="#" data-role="but ton"
 data-rel="back" >Cancel
 </div>
</div><!-- /page -->

The <select> markups in jQM are rendered into slider switches with the data-
role= ' sl ider ' attribute and the hyperlinks are rendered as dialog buttons with the
data-role= ' but ton ' attribute. The following screenshot shows the dialog page:

+LJKFKDUWV�DQG�M4XHU\�0RELOH

[�����]

Likewise, we program the pageini t handler for the dialog page to initialize the
Update button action.

 $(' #opt ions ') . l ive(' pageini t ' ,
 funct ion() {
 var myApp = $.olympicApp;

 $(' #updateChart ') .cl ick(funct ion() {

 var stacking =
 ($(' #stacking ') .val() === 'Off ') ?
 nul l : ' normal ' ;
 var dataLabel =
 !($(' #dataLabel ') .val() == ' off ') ;

 myApp.plotGoldChart(myApp.goldChart , {
 stacking: stacking,
 dataLabel : dataLabel
 }) ;
 }) ;

 }) ;

$FWXDOO\�WKH�DFWLRQ�FRGH�IRU�WKH�EXWWRQ�LV�YHU\�VLPSOH��6LQFH�ZH�GHÀQH�WKH�Update
button with the data-rel= ' back ' attribute, as soon as we tap the button, the
dialog box is closed and goes back to the previous page. The option values from the
<select> inputs are passed to the plotGoldChart routine to redraw the current
chart. The following is a screenshot with only Show Values switched on:

Chapter 9

[�����]

The following screenshot shows a column chart with both stacking and data labeling
switched on:

Changing the graph presentation with a
swipeleft motion event
Here we enhance the experience by adding a swipelef t event to a chart. What we
try to achieve is applying a swipe motion from the right-hand side to the left-hand
side to an existing column chart; this action switches the column chart to a pie chart
with the same dataset and vice versa with the swipe right-hand side motion.

 / / Swi tch to pie chart
 $(' #chart_container ') .on(' swipelef t ' ,
 funct ion(evt) {
 var myApp = $.olympicApp;
 i f (myApp.goldChart .ser ies[0] . type == ' column ') {
 myApp.plotGoldChart(myApp.goldChart , {
 type: ' pie '
 }) ;
 }

+LJKFKDUWV�DQG�M4XHU\�0RELOH

[270]

 }) ;
 / / Swi tch back to defaul t column chart
 $(' #chart_container ') .on(' swiper ight ' ,
 funct ion(evt) {
 var myApp = $.olympicApp;
 i f (myApp.goldChart .ser ies[0] . type == ' pie ') {
 myApp.plotGoldChart(myApp.goldChart) ;
 }
 }) ;

The guard condition inside the handler is to stop redrawing the chart with the same
presentation. The following is the view after the swipelef t action:

Chapter 9

[271]

Switching graph orientation with the
orientationchange event
Assume we are viewing the column chart on a touch phone device in portrait
position. If we rotate the device, the chart will resize itself, but the scale along the y
axis is squashed. As a result, it is less obvious in comparing how well each country
did. To overcome that, we use another jQuery Mobile event, orientat ionchange,
which triggers when the mobile device is rotated. The following is the
implementation for the handler:

/ / Swi tch between vert ical and horizontal bar
$(document) .on(' or ientat ionchange ' ,

 funct ion(evt) {

 / / We only do this for phone device because
 / / the display is narrow
 / / Tablet device have enough space, the
 / / chart wi l l look f ine in both or ientat ions
 i f (device == ' phone ') {

 var myApp = $.olympicApp;
 var or ientat ion = getOr ientat ion() ;

 / / I have to destroy the chart and recreate
 / / to get the inverted axes and legend box
 / / relocated
 myApp.goldChart .destroy() ;

 / / create the chart opt imized for horizontal
 / / view and invert the axis.
 myApp.goldChart = createChart({
 device: device,
 or ientat ion: or ientat ion,
 inverted: (or ientat ion === ' landscape ') ,
 load: myApp.plotGoldChart ,
 legend: ,
 }) ;

 / / Hide the address bar
 window .scrol lTo(0,1) ;
 }

 }
) ;

+LJKFKDUWV�DQG�M4XHU\�0RELOH

[272]

We recreate the chart with the inverted option set to t rue to swap both x and y
axes, as well as positioning the legend in the lower-right corner instead. A method
for the chart load�HYHQW�LV�DOVR�VHW�XS�LQ�WKH�FRQÀJXUDWLRQ��,Q�WKH�HQG��DQ�LQYHUWHG�
chart is produced, as shown in the following screenshot:

The following is a screenshot from a tablet device showing the gold and silver
medals' chart:

Chapter 9

[273]

The plotGoldChart method detects a larger display and renders the chart with full
country names.

Drilling down for data with the point
click event
6R�IDU�ZH�KDYH�RQO\�ÀGGOHG�ZLWK�WKH�WRS�FRXQWULHV�RUGHUHG�E\�JROG�PHGDOV��/HW
V�VHH�
how we can use a Highcharts event to navigate other charts in jQuery Mobile. Back
to the pageini t handler code for chart_page, we declared the variable pointEvt ,
which is a cl ick event handler shared by all the series in gold medal charts. The
following code is for the event:

 var pointEvt = {
 events: {
 cl ick: funct ion(evt) {
 document . locat ion.href = ' . /sport .html?country= '
 / / Country code or name
 + encodeURIComponent(this.category) +
 / / Medal color
 '&color= ' + this.ser ies.name;
 }
 }
 };

+LJKFKDUWV�DQG�M4XHU\�0RELOH

[274]

This event is triggered by touching a bar in a column chart or a slice in a pie chart. As
a result, it loads a new document page with a bar chart. The URL for the document
page is built inside the handler with the selected country code and the medal color as
parameters. The this keyword refers to the data point (that is the country bar) being
clicked. The bar chart displays the list of sports winning the medals from the selected
country and medal color. The following screenshot shows a chart for a list of sports
that won the gold medals for Great Britain and Northern Ireland:

Inside the new page, it uses similar code from the gold medal countries chart to
produce the graph shown in the preceding screenshot. The only difference is that it is
embedded with the point cl ick callbacks. We will see that in the next section.

Chapter 9

[275]

%XLOGLQJ�D�G\QDPLF�FRQWHQW�GLDORJ�ZLWK�
the point click event
Now we know which sports have achieved gold medals in the Olympics, but we
ZDQW�WR�IXUWKHU�ÀQG�RXW�ZKR�DUH�PHGDOLVWV��/HW
V�WRXFK�WKH�Athletics bar in the chart;
a dialog appears and presents a list of athletes in thumbnails along with their names,
photos, and their event information, as shown in the following screenshot:

Notice that the dialog box shown in the preceding screenshot is not a static HTML
page. This is constructed via a point cl ick event and builds the dialog box content
dynamically from the result. The problem is that in order to launch a dialog page
in jQM, we need to have a button somewhere in the page to start from. The trick is
to create a jQM hidden button and call a method to invoke the click action from
inside the event handler. The following code is the HTML for both the hidden button
and dialog page:

<!-- hidden dialog -->
<a id= ' hiddenDialog ' href="#atheletes_dialog"
 data-rel="dialog" data- transi t ion="pop"
 style= ' display:none; ' >

+LJKFKDUWV�DQG�M4XHU\�0RELOH

[�����]

<!-- medal ists page -->
<div data-role="page" id= ' atheletes_dialog ' >
 <div data-role="header">
 <h1></h1>
 </div><!-- /header -->

 <div data-role="content">
 <ul data-role="l istview" data- inset="true"
 id= ' atheletes_l ist ' >

 </div>

 Cancel
</div><!-- /page -->

The following is the implementation of the cl ick handler for the sports chart:

point : {
 events: {
 cl ick: funct ion(evt) {
 var params = {
 country : ur lParams.country,
 color : ur lParams.color . toLowerCase() ,
 sport : this.category
 };

 / / Set the t i t le for dialog
 $(' #atheletes_dialog h1 ') . text(this.category +
 " (" + ur lParams.country + ") - " +
 ur lParams.color + " medal ists");

 / / Simulate a but ton cl ick to launch the
 / / l ist view dialog
 $(' #hiddenDialog ') .cl ick() ;

 / / Launch ajax query, append the resul t into
 / / a l ist and launch the dialog
 $.getJSON(' . /olympic.php ' , params,
 funct ion(resul t) {

 $("#atheletes_l ist") .empty() ;
 $.each(resul t . rows,
 funct ion(idx, athelete) {
 / / Format t ing the image, name, and
 / / the sport event
 var content = "<l i><img src= ' " +
 athelete. image + " ' />" + "<h3>" +

Chapter 9

[277]

 athelete.name + "</h3><p>"
 + athelete.event +
 "</p><p>" +
 athelete.desc + "</p></ l i>";

 $("#atheletes_l ist") .append(content) ;
 }) ;
 / / Need this to apply the format to
 / / the new entry
 $(' #atheletes_l ist ') . l istview(' refresh ') ;
 }) ; / / getJSON
 }
 }

First we assemble the title for the dialog page ready to launch. Then we trigger an
action click to the hidden button with the call as follows:

$(' #hiddenDialog ') .cl ick() ;

This in turn generates a click event to launch the dialog page. Then we issue an Ajax
query for the list of medalists with the current selected country, medal color, and
VSRUW�DV�WKH�ÀOWHUV��8SRQ�UHWXUQ��ZH�IRUPDW�HDFK�LWHP�IURP�WKH�UHVXOW�DQG�LQVHUW�WKHP�
into the list, atheletes_l ist .

Applying the gesturechange (pinch
actions) event to a pie chart
So far we have only explored actions involving a single touch point. Our next
goal is to learn how to apply more advanced action events with multi-touch. One
of the common actions is the pinch-in/out for zooming out/in respectively. The
Safari browser for iOS supports this motion with gesturestar t , gesturechange,
gestureend�HYHQWV��:KHQHYHU�WKHUH�DUH�WZR�RU�PRUH�ÀQJHUV�WRXFKLQJ�WKH�VFUHHQ��WKH�
gesturestar t �HYHQW�LV�ÀUHG��7KHQ�WKH�gesturechange event is triggered when the
ÀQJHUV�DUH�PRYHG�RQ�WKH�VFUHHQ��:KHQ�WKH�ÀQJHUV�OHDYH�WKH�VFUHHQ��WKH�gestureend
event is generated. In returning control to the event handler, if the action is
recognized, a certain property in the event object is updated. For instance, the scale
property in the event object is set to larger than 1.0 for pinch-out and less than 1.0
for pinch-in. For the GestureEvent class reference, please see ht tp: / /developer .
apple.com/ l ibrary/safari /#documentat ion/UserExperience/Reference/
GestureEventClassReference/GestureEvent /GestureEvent .html .

+LJKFKDUWV�DQG�M4XHU\�0RELOH

[278]

In this section we are going to apply the pinch motions to a pie chart. For the
pinch-out action, we turn the pie chart into a doughnut chart with extra information
on the outer ring, and vice versa for pinch-in, turning the doughnut chart back to
a pie chart. First of all, let's launch a new chart, Top 10 countries by medals, the
second item from the front menu. The following screenshot is the output of the chart:

Chapter 9

[�����]

When we perform a pinch-out action, and the chart is redrawn, as shown in the
following screenshot:

The outer ring shows the ratio of each color medal for each country. Moreover, the
original pie chart data labels move inwards to make space for the outer ring. Let's see
how the gesturechange event is implemented. The following is the code inside the
pageini t handler:

 $(' #chart_container ') .on(' gesturechange ' ,
 funct ion(evt) {
 evt = evt .or iginalEvent | | evt ;
 var myApp = $.olympicApp;

 i f (evt .scale > 1) {
 / / Pinch open - from pie chart to
 / / donut chart
 i f (!myApp.medalChart .ser ies[1] .visible) {

+LJKFKDUWV�DQG�M4XHU\�0RELOH

[280]

 myApp.medalChart .destroy() ;
 myApp.medalChart = createChart({
 or ientat ion: getOr ientat ion() ,
 device: device
 outerRing: t rue,
 load: myApp.plotMedalChart
 }) ;
 }
 } else i f (myApp.medalChart .ser ies[1] .visible) {
 / / Pinch close
 myApp.medalChart .destroy() ;
 myApp.medalChart = createChart({
 or ientat ion: getOr ientat ion() ,
 device: device:
 load: myApp.plotMedalChart
 }) ;
 }
 }) ;

We bind the gesture event to the chart container. This event handler is called
whenever there is a multi-touch gesture made on the screen, like a pinch or rotate
motion. In order to make sure this is a pinch action, we need to look into the original
event generated by the browser which is wrapped by the jQuery layer. We will
examine whether the scale property has been set and decide whether it is pinch-in
or out, then we will recreate the pie or doughnut chart if necessary.

Summary
The goal of this chapter was to deploy Highcharts graphs into mobile touch devices.
To do that, we used a mobile web development framework, jQuery Mobile. A very
brief introduction and the concepts of the framework was given; we illustrated how
to integrate between Highcharts and jQuery Mobile.

Then we demonstrated a mobile application showing the results of Olympic 2012
medals table. A menu of charts was built using the jQuery Mobile dialog page, and
then we showed how to use the single touch, multi-touch, and orientation events
to navigate between charts. We also show how to use the Highcharts click event to
build a dialog page dynamically.

In the next chapter we will learn how to apply Highcharts with ExtJs, a very
powerful and popular Rich Internet Application (RIA) framework for building
a desktop style application.

Highcharts and Ext JS
This chapter starts with an introduction of Sencha's Ext JS. Since the Ext JS
framework covers a broad range of features, it comprises of a large collection of
classes. Therefore a quick start guide on a small set will be given, especially on the
user interface components likely to be used with Highcharts. Then we will learn
which Highcharts extension we have for Ext JS and how to create a Highcharts graph
within Ext JS. We will also learn about a small set of APIs provided by the extension.
After that we will use network data to build a simple application to demonstrate
how the Ext JS components can interact with Highcharts. Finally, we will have a brief
look at a commercial Ext JS application working together with Highcharts. In this
chapter we will cover the following:

�� Introducing and giving a quick tutorial on Sencha Ext JS classes
�� Introducing the Highcharts extension for Ext JS
�� 'HPRQVWUDWLQJ�KRZ�WR�FRQYHUW�D�ZRUNLQJ�+LJKFKDUWV�FRQÀJXUDWLRQ�IRU�WKH�

extension
�� Preparing Ext JS JsonStore object for the extension
�� Describing APIs provided by the extension module
�� Illustrating how to create an Ext JS application with the Highcharts extension

Short introduction to Sencha Ext JS
Sencha's Ext JS is one of the most comprehensive Rich Internet Application (RIA)
frameworks on the market. An RIA framework can produce web frontend that
behaves like a desktop application. Ext JS supports many features such as proxy
storage, charting, managing SVG, tabs, toolbars, a myriad of different form inputs
and many, many others. There are other popular RIA frameworks, such as Java-
based Google Web Toolkit (GWT) and Python-based Dojo. Both frameworks can be
integrated with Highcharts via third-party contributed software.

Highcharts and Ext JS

[282]

See ht tp: / /www .highcharts.com/download for the
full list of software contributed by other developers.

The Highcharts extension was originally written by Daniel Kloosterman for Ext JS 2+
as an adapter, as it wasn't supporting any charts. In Ext JS 3, it started adopting the
YUI charting library as the charting solution. However the charts lack features and
style, and the main drawback is that they require Flash to run. Since Ext JS 3.1, I have
been maintaining the extension and added features such as supporting Donut charts
and enhancing some of the APIs.

Although Ext JS 4 comes with its own charts library, some users still prefer
+LJKFKDUWV�RYHU�([W�-6���FKDUWV�IRU�VW\OH�DQG�ÁH[LELOLW\��0RUHRYHU�([W�-6���FDQ�
run along with Version 3 codes, so it is desirable to enhance extension to natively
support Ext JS 4, which I have done. The extension implementation has always been
IROORZLQJ�WKH�RULJLQDO�DSSURDFK�ZKLFK�LV�WR�SUHVHUYH�XVLQJ�+LJKFKDUWV�FRQÀJXUDWLRQV�
as much as possible.

There are demos online at joe.org/demos/Highcharts_Sencha/desktop/ and
the extension can be downloaded from ht tp: / /gi thub.com/JoeKuan/
Highcharts_Sencha/ .

Unlike jQuery UI, an Ext JS application is programmed in pure JavaScript, without
WKH�QHHG�WR�FROODERUDWH�ZLWK�+70/�PDUNXSV�QRU�ÀGGOH�ZLWK�SDUWLFXODU�&66�FODVVHV�
(strictly speaking, there are times when it is necessary to interface with HTML and
CSS, but it is not common and is only in small doses). This empowers programmers
to focus on developing the entire web application in a single language and to
concentrate on application logic. That also pushes the server-side development to
reside in data operations only, unlike some approaches using server-side language
with HTML and CSS to serve client pages.

Technically, JavaScript does not have classes; function itself is an object. The Ext JS
framework provides access to its components through classes approach organized in
a hierarchical manner. In this chapter we will use the word "class" to refer to the Ext
JS classes.

Chapter 10

[283]

A quick tour of Ext JS components
There are myriads of classes in Ext JS and it is beyond the scope of this book to
introduce them. Sencha provides three types of online documentation in both quality
and quantity—a reference manual, tutorials (written and video), and working
demos. Readers are strongly recommended to spend ample time reviewing these
materials. In this section a very brief introduction is given about some components,
especially those that are likely to interface with Highcharts. This chapter is by no
means enough to get readers to start programming in Ext JS but should be enough
to give you an idea.

Implementing and loading Ext JS code
$Q�([W�-6�DSSOLFDWLRQ�FDQ�DOZD\V�EH�GLYLGHG�LQWR�PXOWLSOH�-DYD6FULSW�ÀOHV��EXW�WKH\�
VKRXOG�DOZD\V�VWDUW�IURP�RQH�+70/�ÀOH��The following code snippet demonstrates
KRZ�WR�VWDUW�XS�([W�-6�IURP�DQ�+70/�ÀOH�

<html>
 <head>
 <meta ht tp-equiv="Content-Type"
 content="text /html ; charset=UTF-8">
 <t i t le>HighChart for Ext JS 4</ t i t le>
 <l ink rel="stylesheet" type="text /css"
 href=". . /ext js/resources/css/ext-al l .css" />
 </head>
 <body></body>
 <script type="text / javascript"
 src=". . /ext js/ext-al l . js"></script>
 <script type= ' text / javascript ' >
 Ext .onReady(funct ion() {
 / / appl icat ion star tup code goes here

 }) ;
 </scr ipt>
</html>

7KH�VFULSW�ÀOH��ext-al l . js, contains all the Ext JS classes in a compressed format.

([W�-6�KDV�WKH�IDFLOLW\�WR�EXLOG�D�FXVWRP�FODVV�ÀOH�WR�FXW�
downloading for production deployment. We are leaving
that for the readers to explore.

Ext .onReady is the DOM ready method, same as the $. ready jQuery that the
application startup code starts running inside this function.

Highcharts and Ext JS

[284]

Creating and accessing Ext JS components
Out of all the classes in Ext JS, we should start discussing Ext .Component , which is
the base class for Ext JS user interface components. Depending on the characteristic
of the component, some of them such as Panel , Window, FieldSet , and RadioGroup,
can contain multiple components, because they are inherited through another class—
Container. We will look into Container in more detail later.

To create an Ext JS object, we use the Ext .create method, which takes two
SDUDPHWHUV��7KH�ÀUVW�SDUDPHWHU�LV�WKH�VWULQJ�SUHVHQWDWLRQ�RI�D�FODVV�SDWK��IRU�H[DPSOH�
'Ext .window.Window ' , or an alias name such as 'widget .window ' . The second
SDUDPHWHU�LV�WKH�REMHFW�VSHFLÀHU�FRQWDLQLQJ�WKH�LQLWLDO�YDOXHV�WR�LQVWDQWLDWH�D�FODVV�

var win = Ext .create('Ext .window.Window ' , {
 t i t le: 'Ext JS Window ' ,
 layout : ' f i t ' ,
 i tems: [{
 xtype: ' textarea ' ,
 id: ' textbox ' ,
 value: 'Lorem ipsum dolor si t amet , . . . '
 }]
}) ;

win.show() ;

The preceding code snippet is used to create a window widget and its content is
GHÀQHG�WKURXJK�WKH�i tems option. Window is a class derived from the Container
class which inherits the i tems option for containing other components. When the
ZLQGRZ�LV�ÀQDOO\�FUHDWHG�DQG�UHDG\�WR�UHQGHU��LW�JRHV�WKURXJK�HDFK�REMHFW�VSHFLÀHU�LQ�
the i tems array and creates each component.

The xtype�RSWLRQ�LV�WKH�([W�VSHFLÀF�W\SH��ZKLFK�has a short unique name to
symbolize the component's class path. In Ext JS all interface components have their
own xtype names (this refers to the Ext .Component manual). The xtype option
is commonly used for convenience to create components within the container, as
opposed to Ext .create with a full path name.

The id�ÀHOG�LV�WR�JLYH�D�XQLTXH�,'�QDPH�WR�D�FRPSRQHQW��7KH�SXUSRVH�LV�WR�JDLQ�
direct access to a component at any point inside a program. To retrieve the
component with an ID value, we can execute the following line of code:

var tb = Ext .getCmp(' textbox ') ;

Chapter 10

[285]

Alternatively, we can use the i temId option to assign a unique name. The difference
is that the id�RSWLRQ�ÀHOG�KDV�WR�EH�XQLTXHO\�JOREDO�WR�WKH�DSSOLFDWLRQ�ZKHUHDV�
i temId�RQO\�KDV�WR�EH�XQLTXH�ZLWKLQ�WKH�SDUHQW�FRQWDLQHU�WR�DYRLG�QDPH�FRQÁLFW�
elsewhere in the application. To access a component with the i temId value, we need
to call getComponent from the immediate parent container, as follows:

var tb = win.getComponent(' textbox ') ;

Moreover we can chain the call all the way from the top level to the desired
component, as follows:

var val =
win.getComponent(' panel ') .getComponent(' textbox ') .getValue() ;

The ' textbox ' (with i temId�GHÀQHG��FRPSRQHQW�LV�FRQVWUXFWHG�LQVLGH�WKH�SDUHQW�
container, ' panel ' , which resides inside the window object. Although the getCmp
method provides a direct easy access to a component, it should generally be avoided
because of slower performance and undesired effects if a duplicated id�RSWLRQ�ÀHOG�
is accidentally used.

For the sake of avoiding long sample code, we use the
getCmp call in some of the demos.

Using layout and viewport
As we mentioned before, some types of components have the ability to contain other
components because they are extended from the Container class. Another feature
of the Container class is to arrange the layout between the contained components;
WKH�OD\RXW�SROLF\�LV�VSHFLÀHG�YLD�WKH�layout option. There are about a dozen layout
policies; among them ' anchor ' , ' border ' , and ' f i t ' are most commonly used
(the card layout is also used often but through the tab panel). Border layout
LV�ZLGHO\�XVHG�ZLWKLQ�*8,�SURJUDPPLQJ��7KH�OD\RXW�LV�ÀQHO\�GLYLGHG�LQWR�WKH�
' nor th ' , ' east ' , ' south ' , 'west ' , and ' center ' regions.

When developing an application that requires utilizing the whole browser space, we
generally use a Viewport class coupled with border layout. Viewport is a special
type of container whose size automatically binds to the browser. The following is a
simple example for using a viewport:

 var viewport = Ext .create('Ext .container .Viewport ' , {
 layout : ' border ' ,
 defaul ts: {
 frame: t rue
 },

Highcharts and Ext JS

[�����]

 i tems: [{
 region: ' nor th ' ,
 html : ' <h1>North</h1> '
 }, {
 region: ' east ' ,
 html : ' <h1>East</h1> ' ,
 width: ' 15% '
 }, {
 region: ' south ' ,
 html : ' <h1>South</h1> '
 }, {
 region: 'west ' ,
 html : ' <h1>West</h1> ' ,
 width: ' 20% '
 }, {
 region: ' center ' ,
 html : ' <h1>Center</h1> '
 }]
 }) ;

The following screenshot shows the border layout:

Panel
Panel is a basic container component and is generally used as a building block with
layout format and then combined with more panels or components. Another general
use is to extend the Panel class to a special purpose type of panel for example,
PortalPanel in the online portal demo. The most widely used panel; types are
Gr idPanel , FormPanel , and TabPanel .

Chapter 10

[287]

GridPanel
Gr idPanel is used for displaying data in table format and it comes with lots of
IUXLWIXO�IHDWXUHV��VXFK�DV�GUDJ�DQG�GURS�FROXPQ�RUGHU��FROXPQ�VRUWLQJ��ÁH[LEOH�
data rendering, enable or disable column display, and many others. Gr idPanel can
DOVR�EH�XVHG�ZLWK�GLIIHUHQW�SOXJLQV�VXFK�DV�URZ�HGLWRU��DOORZLQJ�D�XVHU�WR�HGLW�ÀHOG�
YDOXHV�RQ�WKH�Á\��7KH�FODVV�FRPHV�ZLWK�D�ODUJH�VHW�RI�HYHQWV�VHWWLQJV�WKDW�FDQ�HVWDEOLVK�
smooth coordination with other components. Nonetheless, the most tightly coupled
component is with store object which we will demonstrate in a later section.

FormPanel
FormPanel �LV�D�SDQHO�IRU�DFFRPPRGDWLQJ�ÀHOG�LQSXW�FRPSRQHQWV�LQ�IRUP�VW\OH��WKDW�
is, labels on the left-hand side, inputs on the right-hand side, and buttons array.
([W�-6�SURYLGHV�D�JUHDW�VHOHFWLRQ�RI�IRUP�LQSXWV��VXFK�DV�GDWH�WLPH�ÀHOG��FRPERER[��
QXPEHU�ÀHOG��VOLGHU��DQG�PDQ\�RWKHUV��8QGHUQHDWK�WKH�FormPanel layer, there is a
BasicForm�FRPSRQHQW��ZKLFK�FRQWULEXWHV�WR�ÀHOG�YDOLGDWLRQV��IRUP�VXEPLVVLRQ��DQG�
loading services with the store's Record class for adding and editing entries. The
following is a screenshot of FormPanel with various inputs:

TabPanel
TabPanel , as its name implies, is a panel associated with tabs. It supports creating
DQG�UHPRYLQJ�WDEV�RQ�WKH�Á\�DQG�VFUROOLQJ�EHWZHHQ�WDEV��7KH�IROORZLQJ�FRGH�VQLSSHW�
shows how to create a tab panel:

i tems:[{
 xtype: ' tabpanel ' ,
 i tems: [{
 t i t le: 'Tab 1 ' ,
 xtype: ' form ' ,
 i tems: [{

Highcharts and Ext JS

[288]

 }]
 }, {
 t i t le: 'Tab 2 ' ,

 }]
}]

The following is a screenshot of tabs within the tab panel with a scrolling feature:

Window
Window is a special type of panel that is not bound to any parent container and it is
IUHH�ÁRDWLQJ�ZLWKLQ�WKH�DSSOLFDWLRQ��,W�RIIHUV�PDQ\�IHDWXUHV�IRXQG�LQ�QRUPDO�GHVNWRS�
windows such as resize and maximize/minimize, and also comes with options for
adding a toolbar, footer bar, and buttons. Later, we will see the Window panel in
action in an example.

Ajax
The Ext JS framework provides its own method, Ajax. request , for issuing Ajax
queries. This is used when the returned JSON data is not required to be converted
LQWR�WDEOH�URZV�DQG�ÀHOG�FROXPQV��7KH�PHWKRG�LV�JHQHUDOO\�FRXSOHG�ZLWK�Ext .
decode to convert the returned JSON format string into a JavaScript object and
GLUHFWO\�DFFHVV�LQGLYLGXDO�ÀHOGV�LQVLGH�WKH�REMHFW��7KH�IROORZLQJ�FRGH�VQLSSHW�VKRZV�D�
sample of issuing an Ajax query:

Ext .Ajax. request({
 ur l : ' getData.php ' ,
 params: { id: 1 },
 success: funct ion(response) {
 / / Decode JSON response from the server
 var resul t = Ext .decode(response. responseText) ;
 i f (resul t && resul t .success) {

 } else {

 }
 }
}) ;

Chapter 10

[�����]

Store and JsonStore
Store is a general purpose storage class for modeled data. There are several classes
derived from Store but the most important one for Highcharts is JsonStore. It is
a proxy-cached storage class responsible for issuing an Ajax query and unpacks
the returned JSON data into modeled data. The JsonStore class is often used for
accessing database data residing on the server side. A store object can bind with
more than one component, for example a JsonStore object can bind to a grid panel
and a column chart. Clicking on a column order direction in the grid panel can
change the rows' sequence in JsonStore, hence affecting the order of the columns
displayed in the chart. In other words the Store class acts as a skeleton to hold
several components working together effortlessly and systematically.

It is important to note that the load method in the Store class is asynchronous. An
event handler should be assigned to the load event if we want to tie an action after
WKH�GDWD�LV�ORDGHG��7KH�DFWLRQ�FDQ�EH�VSHFLÀHG�HLWKHU�WKURXJK�l isteners.cl ick via
the config or store.on method.

Example of using JsonStore and GridPanel
So far a number of Ext JS components have been introduced; we should see
how they work together. Let's build a simple window application that contains a
table (Gr idPanel) showing a list of hosts with their download usages, which are
returned from the server. Assume we have rows of data returned in JSON format
from the server:

{ "data": [
 { "host" : "192.168.200.145", "download" : 126633683 },
 { "host" : "192.168.200.99" , "download" : 55840235 },
 { "host" : "192.168.200.148", "download" : 54382673 },
 . . .
] }

)LUVW�ZH�GHÀQH�WKH�GDWD�PRGHO�WR�FRUUHVSRQG�ZLWK�WKH�-621�GDWD��)RU�WKH�VDNH�RI�
simple demonstration, we would put all our demo code inside Ext .onReady rather
WKDQ�LQ�D�VHSDUDWH�-DYD6FULSW�ÀOH�

Ext .onReady(funct ion() {
 Ext .define('NetworkData ' , {
 extend: 'Ext .data.Model ' ,
 f ields: [
 {name: ' host ' , type: ' st r ing ' },
 {name: ' download ' , type: ' int ' }
]
 }) ;

Highcharts and Ext JS

[�����]

,W�LV�QRW�PDQGDWRU\�WR�DFFHSW�ÀHOG�QDPHV�UHWXUQHG�E\�WKH�
server. Ext .data.Model offers the mapping option to
PDS�IRU�DQ�DOWHUQDWLYH�ÀHOG�QDPH�WR�XVH�RQ�WKH�FOLHQW�VLGH�

7KH�QH[W�VWHS�LV�WR�GHÀQH�D�JsonStore object with the URL, connection type, and
the data format type. We will bind the JsonStore object with the NetworkData data
PRGHO��GHÀQHG�LQ�WKH�SUHFHGLQJ�FRGH�VQLSSHW�

var netStore = Ext .create('Ext .data.JsonStore ' , {
 autoLoad: t rue,
 model : 'NetworkData ' ,
 proxy: {
 type: ' ajax ' ,
 ur l : ' . /getNetTraff ic.php ' ,
 reader: {
 type: ' json ' ,
 idProperty: ' host ' ,
 root : ' data '
 }
 }
}) ;

idProperty�LV�WR�GHÀQH�ZKLFK�ÀHOG�LV�UHJDUGHG�DV�DQ�,'�LI�WKH�GHIDXOW� ' id ' �ÀHOG�
name is not provided, so that methods such as Store.getById can function
properly. The root option tells the reader (JsonReader) which property name holds
the array of row data in the JSON response from the server. The next task is to build
a Window panel with a Gr idPanel content, as follows:

var win = Ext .create('Ext .window.Window ' , {
 t i t le: 'Network Traff ic ' ,
 layout : ' f i t ' ,
 i tems: [{
 xtype: ' gr id ' ,
 height : 170,
 width: 270,
 store: netStore,
 columns: [{
 header: ' IP Address ' ,
 dataIndex: ' host ' ,
 width: 150
 }, {
 header: 'Download ' ,
 dataIndex: ' download '
 }]
 }]
}) .show() ;

Chapter 10

[�����]

We instruct the grid panel to bind with the netStore�REMHFW��DQG�GHÀQH�D�OLVW�RI�
FROXPQV�WR�GLVSOD\�DQG�PDWFK�HDFK�FROXPQ�WR�WKH�VWRUH
V�GDWD�ÀHOG�WKURXJK�WKH�
dataIndex option. The following is a screenshot showing part of a window with
a grid panel inside it:

The Highcharts extension
In this section we are going to examine how simple it is to create a Highcharts
component in Ext JS. We do this by importing from an existing Highcharts
FRQÀJXUDWLRQ��/HW
V�FRQWLQXH�IURP�WKH�SUHYLRXV�-VRQ6WRUH�H[DPSOH�DQG�LQFRUSRUDWH�LW�
with the extension.

Step 1 – removing some of the
Highcharts options
Assume we already have a working independent +LJKFKDUWV�FRQÀJXUDWLRQ��
as follows:

var myConfig = {
 chart : {
 renderTo: ' container ' ,
 width: 350,
 height : 300,

 },
 ser ies: [{
 type: ' column ' ,
 data: [126633683, 55840235, ]
 }] ,
 xAxis: {
 categories: ["192.168.200.145",
 "192.168.200.99", . . .] ,

Highcharts and Ext JS

[�����]

 },
 yAxis: { },
 t i t le: { },

};

7KH�ÀUVW�VWHS�LV�WR�UHPRYH�DOO�WKH�ÀHOGV�WKDW�WKH�H[WHQVLRQ�ZLOO�LQWHUQDOO\�KDQGOH�DQG�
pass them to Highcharts. For that reason we need to remove chart . renderTo and
the dimension options (width and height). We also need to remove the chart .
ser ies array, because eventually JsonStore will be the source of graph data. We
also want to remove chart .xAxis.categories as it contains graph data.

Step 2 – converting to Highcharts
H[WHQVLRQ�FRQ¿JXUDWLRQ
7KH�QH[W�VWHS�LV�WR�FRQVWUXFW�D�QHZ�FRQÀJXUDWLRQ�IRU�WKH�extension deriving from the
ROG�+LJKFKDUWV�FRQÀJXUDWLRQ��/HW
V�VWDUW�D�QHZ�FRQÀJXUDWLRQ�REMHFW��myNewConfig,
with the size properties:

var myNewConfig = {
 width: 350,
 height : 300
};

The next step is to create a new option, chartConfig, which is required by the
extension. We put the rest of the properties left in the myConfig object towards
chartConfig��7KH�IROORZLQJ�FRGH�VQLSSHW�VKRZV�ZKDW�WKH�QHZ�FRQÀJ�VKRXOG�
look like:

var myNewConfig = {
 width: 450,
 height : 350,
 chartConfig: {
 chart : { },
 xAxis: { },
 yAxis: { },
 t i t le: { },

 }
};

Chapter 10

[�����]

Step 3 – constructing a series option by
mapping the JsonStore data model
Recalling the data model of the store object, we have the following code snippet:

 f ields: [
 { name: ' host ' , type: ' st r ing ' },
 { name: ' download ' , type: ' int ' }
]

The next task is to build a series array with options matching with the data model
of JsonStore. The new series array has a similar structure to the one in Highcharts
RSWLRQV��:H�DOVR�QHHG�WR�OLQN�WKH�VWRUH�REMHFW�LQVLGH�WKH�REMHFW�FRQÀJXUDWLRQ��
Eventually, the options object should become like the following code snippet:

var myNewConfig = {
 width: 450,
 height : 350,
 store: netStore,
 ser ies: [{
 name: 'Network Traff ic ' ,
 type: ' column ' ,
 dataIndex: ' download '
 }] ,
 xField: ' host ' ,
 chartConfig: {

 }
};

The dataIndex option is used for mapping the y value from JsonStore into the
series data array. As the ' host ' �ÀHOG�LV�D�VWULQJ�W\SH�GDWD��LW�LV�used as categories.
Therefore we specify the xField option outside the series array shared by the series.

Step 4 – creating the Highcharts extension
7KH�ÀQDO�VWHS�LV�WR�SXW�HYHU\WKLQJ�WRJHWKHU�WR�GLVSOD\�D�FKDUW�LQ�([W�-6��:H�FDQ�FUHDWH�
D�+LJKFKDUWV�FRPSRQHQW�ÀUVW�DQG�SXW�LW�LQVLGH�D�Ext JS container object, as follows:

var hcChart = Ext .create('Chart .ux.Highcharts ' , myNewConfig) ;
var win = Ext .create('widget .window ' , {
 t i t le: 'Network Traff ic ' ,
 layout : ' f i t ' ,
 i tems: [hcChart]
}) .show() ;

Highcharts and Ext JS

[�����]

2U�DOWHUQDWLYHO\��ZH�FDQ�FUHDWH�WKH�ZKROH�WKLQJ�WKURXJK�RQH�FRQÀJXUDWLRQ�XVLQJ�
xtype, as follows:

var win = Ext .create('widget .window ' , {
 t i t le: 'Network Traff ic ' ,
 layout : ' f i t ' ,
 i tems: [{
 xtype: ' highchart ' ,
 i temId: ' highchart ' ,
 height : 350,
 width: 450,
 store: netStore,
 ser ies: [{ }] ,
 xField: ' host ' ,
 chartConfig: {
 chart : { },
 xAxis: { },
 yAxis: { },

 }]
}) .show() ;

The following screenshot shows a Highcharts graph inside an Ext JS window:

Chapter 10

[�����]

In order to display data at startup, the JsonStore must be
instantiated by setting the autoLoad option to t rue or calling
the Store. load method manually at the start of the program.

3DVVLQJ�VHULHV�VSHFL¿F�RSWLRQV�LQ�WKH�
Highcharts extension
,I�ZH�QHHG�WR�SDVV�VSHFLÀF�VHULHV�RSWLRQV��IRU�H[DPSOH�FRORU��data point decorations,
DQG�VR�RQ��WKHQ�ZH�VLPSO\�SXW�LW�LQWR�WKH�VHULHV�FRQÀJXUDWLRQ�LQ�WKH�VDPH�ZD\�ZH�
normally do in Highcharts.

 store: netStore,
 ser ies: [{
 name: 'Network Traff ic ' ,
 type: ' column ' ,
 dataIndex: ' download ' ,
 color : ' #A47D7C '
 }] ,

The extension will copy these options across at the same time as creating the series.

Converting a data model into a
Highcharts series
In the previous example we learned how to map a simple data model from the Ext JS
store into Highcharts. However there are several ways to declare the data mapping
and each way has different implications depending on the scenarios, especially in
multiple series.

X-axis category data and y-axis numerical values
This is the simplest and probably the most common scenario. Each series has
numerical values along the y axis and shares data between the categories. For
historical reasons the dataIndex option can also be replaced with another option
name, yField, which has a higher priority, and both behave in exactly the same way.

 ser ies: [{
 name: 'Upload ' ,
 type: ' column ' ,
 yField: ' upload '
 }, {

Highcharts and Ext JS

[�����]

 name: 'Download ' ,
 type: ' column ' ,
 yField: ' download '
 }] ,
 / / 'Monday ' , 'Tuesday ' , 'Wednesday '
 xField: ' day '

Numerical values for both x and y axes
Another scenario is where both x and y axes are made up of numerical values. There
are two different ways to specify the data mapping. First each series holds the y-axis
YDOXHV�DQG�VKDUHV�FRPPRQ�[�D[LV�YDOXHV��,Q�WKLV�FDVH�WKH�VHULHV�DUH�VSHFLÀHG�LQ�WKH�
same way as the previous example:

 ser ies: [{
 name: 'Upload ' ,
 type: ' l ine ' ,
 yField: ' upload '
 }, {
 name: 'Download ' ,
 type: ' l ine ' ,
 yField: ' download '
 }] ,
 / / Time in UTC
 xField: ' t ime '

Another situation is each series holding its own pairs of x and y values, as follows:

 ser ies: [{
 name: 'Upload ' ,
 type: ' l ine ' ,
 yField: ' upload ' ,
 xField: ' upload_t ime '
 }, {
 name: 'Download ' ,
 type: ' l ine ' ,
 yField: ' download ' ,
 xField: ' download_t ime '
 }]

7KH�GLIIHUHQFH�EHWZHHQ�WKH�WZR�VHWWLQJV�LV�WKDW�WKH�ÀUVW�FRQÀJXUDWLRQ�HQGV�XS�ZLWK�
two line series in the graph with data points aligning along the x axis, whereas the
latter one doesn't, and the store data model is different as well.

Chapter 10

[�����]

Performing pre-processing from store data
Suppose we need to perform a pre-processing task on the server data before
we can plot the chart. We can do this by overriding a template method in the
VHULHV�FRQÀJXUDWLRQ�

Inside the extension code each series is actually instantiated from a Serie class. This
FODVV�KDV�D�VWDQGDUG�PHWKRG�GHÀQHG��getData, which is for retrieving data from the
store. Let's visit the original implementation of getData:

 getData : funct ion(record, index) {
 var yField = this.yField | | this.dataIndex,
 xField = this.xField,
 point = {
 data : record.data,
 y : record.data[yField]
 };
 i f(xField)
 point .x = record.data[xField] ;
 return point ;
 },

The classes and methods in this extension are named that
way with the word "Serie" by the original author.

Basically, getData is called for every row returned from JsonStore. The method
LV�SDVVHG�ZLWK�WZR�SDUDPHWHUV��7KH�ÀUVW�RQH�LV�DQ�([W�-6�Record object, which is an
object representation of a row of data. The second parameter is the index value of the
record inside the store. Inside the Record object, the data option holds the values
DFFRUGLQJ�WR�WKH�PRGHO�GHÀQLWLRQ�ZKHQ�WKH�VWRUH�REMHFW�LV�FUHDWHG�

As we can see, the simple implementation of getData is to access record.data
based on the values of xField, yField, and dataIndex and formats it into a
Highcharts Point �FRQÀJXUDWLRQ��:H�FDQ�RYHUULGH�WKLV�PHWKRG�DV�ZH�GHFODUH�D�VHULHV�
to suit our need for data conversion. Let's continue the example; suppose the server
is returning the data in a JSON string:

{"data":[
 {"host":"192.168.200.145","download":126633683,
 "upload":104069233},
 {"host":"192.168.200.99","download":55840235,
 "upload":104069233},
 {"host":"192.168.200.148","download":54382673,
 "upload":19565468},

Highcharts and Ext JS

[�����]

JsonStore interprets the preceding data into rows with the following
PRGHO�GHÀQLWLRQ�

 f ields: [
 {name: ' host ' , type: ' st r ing ' },
 {name: ' download ' , type: ' int ' },
 {name: ' upload ' , type: ' int ' }
]

We need to plot a column chart with each bar as the total of upload and download
ÀHOGV��VR�ZH�GHÀQH�WKH�getData method for the series as shown next. Note that we
don't need to declare yField or dataIndex anymore, because the getData method
for this SDUWLFXODU�VHULHV�KDV�DOUHDG\�WDNHQ�FDUH�RI�WKH�ÀHOG�PDSSLQJV�

 ser ies: [{
 name: 'Total Usage ' ,
 type: ' column ' ,
 getData: funct ion(record, index) {
 return {
 data: record.data,
 y: record.data.upload +
 record.data.download
 };
 }
 }] ,
 xField: ' host ' ,

Plotting pie charts
Plotting pie charts is slightly different to line, column, and scatter charts. A pie
series is composed of data values where each value is from a category. Therefore
WKH�PRGXOH�KDV�WZR�VSHFLÀF�RSWLRQ�QDPHV��categorieField and dataField, for
category and data, respectively. To plot a pie chart the series is needed to specify
the following:

 ser ies: [{
 type: ' pie ' ,
 categorieField: ' host ' ,
 dataField: ' upload ' ,
 }]

The getData method of the PieSerie class subsequently converts the mapped data
from the store into the Point object with values assigned to the name and y�ÀHOGV�

Chapter 10

[�����]

Plotting donut charts
Let's remind ourselves that a donut chart is actually a two-series pie chart in
which the data in the inner pie is a subcategory to its outside pie. In other words
each slice in the inner series is always the total of its outer portions. Therefore
data returned from JsonStore has to be designed in such a way that these can be
JURXSHG�LQWR�VXEFDWHJRULHV�E\�D�ÀHOG�QDPH��,Q�WKLV�FDVH�WKH�-621�GDWD�VKRXOG�EH�
returned, as follows:

{ "data": [
 { "host" : "192.168.200.145", "bytes" : 126633683,
 "direct ion" : "download"},
 { "host" : "192.168.200.145", "bytes" : 104069233,
 "direct ion" : "upload"},
 { "host" : "192.168.200.99", "bytes" : 55840235,
 "direct ion" : "download"},
 { "host" : "192.168.200.99", "bytes" : 104069233,
 "direct ion" : "upload"},

] }

Then we use an extra boolean option, totalDataField, for the inner pie series to
indicate that we want to use dataField to scan for the total value for each "host"
FDWHJRU\��$V�IRU�WKH�RXWHU�VHULHV�ZH�MXVW�GHÀQH�LW�DV�D�QRUPDO�SLH�VHULHV��EXW�ZLWK�
"direct ion" and "bytes" as categorieField and dataField, respectively. The
IROORZLQJ�LV�WKH�VHULHV�GHÀQLWLRQ�IRU�WKH�GRQXW�FKDUW�

 ser ies: [{
 / / Inner pie
 type: ' pie ' ,
 categorieField: ' host ' ,
 dataField: ' bytes ' ,
 totalDataField: t rue,
 size: ' 60% ' ,

 }, {
 / / Outer pie
 type: ' pie ' ,
 categorieField: ' di rect ion ' ,
 dataField: ' bytes ' ,
 innerSize: ' 60% ' ,

 }]

Highcharts and Ext JS

[300]

The following screenshot shows what a donut chart looks like in Ext JS:

Inside the extension the implementation of the getData method for the PieSerie
FODVV�LV�VLJQLÀFDQWO\�GLIIHUHQW�IURP�RWKHU�VHULHV�W\SHV�LQ�RUGHU�WR�KDQGOH�ERWK�SLH�DQG�
donut series data. Therefore it is not advisable to overwrite this method. Later on we
will see how the pie and donut charts are plotted with this module.

Module APIs
The Highcharts extension comes with a small set of APIs; most of them are helper
functions to modify series in the Ext JS layer. As for the Highcharts native APIs,
they can be invoked through the chart property inside the extension component,
for example:

Ext .getComponent(' highchart ') .chart .getSVG({ . . . }) ;

In the preceding line of code, ' highchart ' is the id value when the chart
component is created.

As mentioned before, the chartConfig option contains all the Highcharts
FRQÀJXUDWLRQV��2QFH�WKH�FKDUW�FRPSRQHQW�LV�FUHDWHG��LW�LQWHUQDOO\�VDYHV�chartConfig
inside the component. Hence the chartConfig property possesses all the initial
FRQÀJXUDWLRQV�WKDW�KDYH�FUHDWHG�WKH�FKDUW��/DWHU�ZH�ZLOO�VHH�KRZ�WKLV�chartConfig
property plays a role with the API calls.

Chapter 10

[301]

addSeries
The addSeries method adds one or more series into the chart. The added series is/
are also stored inside the chartConfig.series array, as follows:

addSeries : funct ion(Array series, [Boolean append])

7KH�VHULHV�SDUDPHWHU�LV�DQ�DUUD\�RI�VHULHV�FRQÀJXUDWLRQ�REMHFWV��addSeries not only
DOORZV�VHULHV�FRQÀJXUDWLRQ�ZLWK�WKH�xField, yField, and dataIndex options but also
VXSSRUWV�VHULHV�FRQÀJXUDWLRQ�ZLWK�GDWD�DUUD\��KHQFH�LW�ZRQ
W�JR�YLD�WKH�VWRUH�REMHFW�WR�
extract the data. The following are examples of using addSeries in different ways:

Ext .getComponent(' highchart ') .addSeries([{
 name: 'Upload ' ,
 yField: ' upload '
}] , t rue);

Ext .getComponent(' highchart ') .addSeries([{
 name: 'Random ' ,
 type: ' column ' ,
 data: [524524435, 434324423, 43436454, 47376432]
}] , t rue);

The optional append parameter sets the series parameter to either replace the current
displayed series or append the series to the chart. The default is false.

removeSerie and removeAllSeries
The removeSerie method removes a single series in the chart and the
removeAl lSer ies PHWKRG�UHPRYHV�DOO�WKH�VHULHV�GHÀQHG�IRU�WKH�FKDUW��%RWK�PHWKRGV�
DOVR�UHPRYH�WKH�VHULHV�FRQÀJXUDWLRQ�LQ�chartConfig.ser ies, as follows:

removeSerie : funct ion(Number idx, [Boolean redraw])
removeAl lSer ies : funct ion()

The idx parameter is the index value in the series array.

The optional redraw parameter sets whether redrawing the chart after the series is
removed. The default is t rue.

setTitle and setSubTitle
Both setTi t le and setSubTi t le change the current chart title as well as the title
settings in chartConfig, as follows:

setSubTi t le : funct ion(Str ing t i t le)
setTi t le: funct ion(Str ing t i t le)

Highcharts and Ext JS

[302]

draw
So far we have been mentioning chartConfig but haven't really explained what
it does in the module. The draw method actually destroys the internal Highcharts
object and recreates the chart based on the settings inside the current chartConfig.
Suppose we have already created a chart component, but we want to change some
of the display properties. We modify properties inside chartConfig (Highcharts
FRQÀJXUDWLRQV��DQG�FDOO�WKLV�PHWKRG�WR�UHFUHDWH�WKH�LQWHUQDO�+LJKFKDUWV�REMHFW�

draw: funct ion()

Although we can call Highcharts' native APIs via the internal chart option without
destroying and recreating the chart, not all Highcharts elements can be changed with
API calls, for example series color, legend layout, columns stacking option, invert
chart axes, and so on.

As a result this method enables the extension component to refresh the internal chart
ZLWK�DQ\�FRQÀJXUDWLRQ�FKDQJH�ZLWKRXW�WKH�QHHG�WR�UHFUHDWH�WKH�FRPSRQHQW�LWVHOI��
Hence this empowers the Ext JS application by avoiding removing itself from the
parent's container and reinserting a new one. Also the layout in the parent container
is not disrupted.

Event handling and export modules
Specifying chart event handlers for the extension is exactly the same as how we
normally declare in Highcharts. Since this is now under Ext JS as well as jQuery
environments, the implementation can use both the Ext JS and jQuery methods.

The Highcharts exporting chart module is unaffected by the extension. The export
settings simply bypass this extension and work straightaway.

Extending the example with Highcharts
In this section we are building a larger example that includes other types of panels
and charts. The application is built with a viewport showing two regions—the
' center ' region is a tab panel containing three tabs for each different type of
network data graphs and the 'west ' region shows the table of data of the current
JUDSK�RQ�GLVSOD\��7KH�JUDSK�LQ�WKH�ÀUVW�WDE�LV�Bandwidth Utilisation, which
indicates the data rate passing through the network. The following screenshot shows
the front screen of the application:

Chapter 10

[303]

Plot Yesterday in the toolbar is a toggle button which triggers an additional series,
Yesterday, to be plotted on the same chart. An extra column of data called Yesterday
is also displayed in the left-hand side table, as shown in the following screenshot:

Highcharts and Ext JS

[304]

Inside the Plot Yesterday button's button handler it uses the addSeries
and removeSerie methods to toggle the Yesterday series. The following is
the implementation:

 toggleHandler : funct ion(i tem, pressed) {
 / / Retr ieve the chart extension component
 var chart = Ext .getCmp(' chart1 ') .chart ;
 i f (pressed && chart .ser ies. length == 1) {
 Ext .getCmp(' chart1 ') .addSeries([{
 name: 'Yesterday ' ,
 yField: ' yesterday '
 }] , t rue);
 / / Display yesterday column in the gr id panel

 } else i f (!pressed && chart .ser ies. length == 2) {
 Ext .getCmp(' chart1 ') . removeSerie(1) ;
 / / Hide yesterday column in the gr id panel

 }
 }

Let's move on to the second tab which is a column chart showing a list of hosts with
their network usages in uplink and downlink directions, as follows:

Chapter 10

[305]

When we click on the Stacked Columns button, the bars of both series are stacked
together instead of aligning adjacent to each other, as follows:

This is achieved by modifying the column stacking option inside the extension
chartConfig property and recreating the whole chart with the module's
draw method:

 toggleHandler : funct ion(i tem, pressed) {
 var chart2 = Ext .getCmp(' chart2 ') ;
 chart2.chartConfig.plotOpt ions.column.stacking =
 (pressed) ? ' normal ' : nul l ;
 chart2.draw() ;
 }

Note that we declare the default stacking option inside chartConfig when we
create the chart, so that we can directly modify the property in the handler code later:

 chartConfig: {
 ,
 plotOpt ions: {
 column: { stacking: nul l }
 },

Highcharts and Ext JS

[�����]

7KH�ÀQDO�WDE�LV�Last 7 Days Network Usage, which has a pie chart showing the
network usage for each of the last seven days, as shown in the following screenshot:

Let's see how this pie chart is implemented in detail. JsonStore is adjusted to return
data in the following format:

{"data": [
 {"date": "Mon 13/08", "type": "wan",
 "bytes": 92959786, "color": "#8187ff" },
 {"date": "Mon 13/08", "type": "lan",
 "bytes": 438238992, "color": "#E066A3" },
 {"date": "Tue 14/08", "type": "wan",
 "bytes": 241585530, "color": "#8187ff" },
 {"date":"Tue 14/08", "type": "lan",
 "bytes": 773479723, "color": "#E066A3" },

7KHQ�ZH�GHÀQH�WKH�WDE�SDQHO�FRQWHQW��DV�IROORZV�

 i tems:[{
 xtype: ' highchart ' ,
 id: ' chart3 ' ,
 store: summStore,
 ser ies: [{
 type: ' pie ' ,

Chapter 10

[307]

 name: 'Total ' ,
 categorieField: ' date ' ,
 dataField: ' bytes ' ,
 totalDataField: t rue,
 size: ' 60% ' ,
 showInLegend: t rue,
 dataLabels: { enabled: t rue }
 }] ,
 chartConfig: {
 chart : { },
 t i t le: { text : nul l },
 legend: { enabled: false }
 }
 }]

The series is set up as an inner series, hence the use of the totalDataField and
dataField options to get the total bytes of "lan" and "wan" as the slice value for
each ' host ' . If we click on the 6KRZ�7UDIÀF�7\SH button, then the pie chart is
changed to a donut chart, as shown in the following screenshot:

Highcharts and Ext JS

[308]

7KH�RULJLQDO�GDWD�ODEHOV�LQ�WKH�ÀUVW�SLH�FKDUW�DUH�UHSODFHG�ZLWK�LWHPV�LQVLGH�WKH�OHJHQG�
ER[��$Q�RXWHU�VHULHV�LV�GLVSOD\HG�ZLWK�D�À[HG�FRORU�VFKHPH�WR�VKRZ�WKH�LAN and
WAN�SRUWLRQ�RI�WUDIÀF��7KH�IROORZLQJ�LV�WKH�6KRZ�7UDIÀF�7\SH button's button
handler code:

 toggleHandler : funct ion(i tem , pressed) {
 var config = Ext .getCmp(' chart3 ') .chartConfig;
 i f (pressed) {
 Ext .getCmp(' chart3 ') .addSeries([{
 type: ' pie ' ,
 center : [' 50% ' , ' 45% '] ,
 categorieField: ' type ' ,
 dataField: ' bytes ' ,
 colorField: ' color ' ,
 innerSize: ' 50% ' ,
 dataLabels: {
 distance: 20,
 format ter : funct ion() {
 i f (this.point .x <= 1) {
 return this.point .name. toUpperCase() ;
 }
 return nul l ;
 }
 },
 size: ' 60% '
 }] , t rue);

 config. legend.enabled = t rue;
 config.ser ies[0] .dataLabels.enabled = false;
 config.ser ies[0] .size = ' 50% ' ;
 config.ser ies[0] .center = [' 50% ' , ' 45% '] ;
 } else {
 Ext .getCmp(' chart3 ') . removeSerie(1) ;
 config. legend.enabled = false;
 config.ser ies[0] .dataLabels.enabled = t rue;
 config.ser ies[0] .size = ' 60% ' ;
 config.ser ies[0] .center = [' 50% ' , ' 50% '] ;
 }
 Ext .getCmp(' chart3 ') .draw() ;
 }

Chapter 10

[�����]

If the toggle button is enabled, then we add an outer pie series (with innerSize
option) via the addSeries method. Moreover, we align the outer series accordingly
ZLWK�WKH�WUDIÀF� ' type ' , hence categorieField and dataField are assigned to ' type '
and ' bytes ' . Since more information is needed to display the second series, we set
WKH�LQQHU�VHULHV�WR�D�VPDOOHU�VL]H�IRU�PRUH�VSDFH��,Q�RUGHU�WR�RQO\�VKRZ�WKH�ÀUVW�WZR�
data labels in the outer series, we implement dataLabels. format ter to print the label
when this.point .x is 0 and 1. After that, we disable the data labels by returning null
in the format ter function. Finally, the draw�PHWKRG�LV�XVHG�WR�UHÁHFW�DOO�WKH�FKDQJHV�

Displaying a context menu by clicking on a
data point
)RU�LQWHUDFWLYH�DSSOLFDWLRQV�LW�ZRXOG�EH�KDQG\�WR�DOORZ�XVHUV�WR�ODXQFK�VSHFLÀF�
actions by clicking on a data point. To do that we need to handle Highcharts' click
events. Here, we create a simple menu for showing the difference between the
selected point and the average value of the series. The following is the sample code:

point : {
 events: {
 cl ick: funct ion(evt) {
 var menu =
 Ext .create('Ext .menu.Menu ' , {
 i tems: [{
 text : 'Compare to Average Usage ' ,
 scope: this,
 handler : funct ion() {
 var ser ies = this.ser ies,
 yVal = this, avg = 0, msg = ' ' ;

 Ext .each(this.ser ies.data, funct ion(point) {
 avg += point .y;
 }) ;
 avg /= this.ser ies.data. length;

 i f (yVal > avg) {
 msg =
 Highcharts.numberFormat(yVal - avg) +
 " above average (" +
 Highcharts.numberFormat(avg) + ")";
 } else {
 msg =
 Highcharts.numberFormat(avg - yVal) +
 " below average (" +
 Highcharts.numberFormat(avg) + ")";
 }

Highcharts and Ext JS

[310]

 Ext .Msg.aler t(' Info ' , msg);
 }
 }] / / i tems:
 }) ;

 menu.showAt (evt .point .pageX , evt .point .pageY) ;
 }
 }
 }

First we create a simple Ext JS Menu object with the menu item Compare to Average
Usage. The click handler is called with the mouse event parameter, evt , and then we
obtain the mouse pointer location, pageX and pageY, and pass to the menu object. As
a result the Ext JS menu appears next to the pointer after clicking on a data point.

The ' this ' keyword in the cl ick event handler refers to the selected point object.
We then use the scope option to pass the Highcharts point object to the menu
handler layer. Inside the handler the ' this ' keyword becomes the data point object
instead of the Ext JS menu item. We extract the series data to calculate the average
and compute the difference with the selected point value. Then we display the
message with the value. The following is the screenshot of the menu:

Chapter 10

[311]

A commercially Rich Internet Application
ZLWK�+LJKFKDUWV�±�$SS4R6
So far we have demonstrated how Highcharts can be applied within the Ext JS
framework. However the demo itself seems rather shrinkwrapped for an RIA
product. In this section we will have a quick glance at a commercial application,
AppQoS, a tool for monitoring networked applications' performance developed by
iTrinegy. Due to the nature of its business, a stack of diagnostic graphs are required
for this type of application. The whole application is designed as a collection of
SRUWDOV�IRU�PRQLWRULQJ�QHWZRUN�WUDIÀF�IURP�PXOWLSOH�VLWHV��8VHUV�FDQ�GULOO�GRZQ�
IURP�XWLOL]DWLRQ�JUDSK�WR�WRS�GRZQOLQN�XVDJH�E\�,3�DGGUHVV�JUDSK�DQG�PRGLI\�ÀOWHU�
properties to display relative data in multiple series, and so on.

,Q�RUGHU�WR�ÀQH�WXQH�WKH�PRQLWRULQJ�SDUDPHWHUV�DQG�SURYLGH�D�SRUWDO�LQWHUIDFH��
a framework offering dynamic and calibrated user interfaces is needed. For that
reason Ext JS is a suitable candidate, which offers a rich set of professional looking
widget components and its cross-browsers' support makes building complicated
RIA software manageable. The following is the interface for launching a bandwidth
XWLOL]DWLRQ�JUDSK�ZLWK�VSHFLÀF�SDUDPHWHUV�

Highcharts and Ext JS

[312]

The Highcharts events are easily bound with Ext JS components, such that a fully
interactive navigation style becomes possible. For instance, if a peak appears in the
Utilisation graph, the users can either click on the peak data point or highlight a
UHJLRQ�IRU�D�VSHFLÀF�WLPH�UDQJH��WKHQ�D�FRQWH[W�PHQX�ZLWK�D�VHOHFWLRQ�RI�QHWZRUN�
graphs pops up. This action means that we can append the selected time region to be
SDUW�RI�WKH�DFFXPXODWHG�ÀOWHUV�DQG�QDYLJDWH�WRZDUGV�D�VSHFLÀF�JUDSK��7KH�IROORZLQJ�
is a screenshot of the context menu which shows up in one of the graphs:

If we proceed by selecting the same graph again, that is Utilisation, it means we
want to zoom into higher details within the selected time region. This doesn't use the
Highcharts default zoom action, which just stretches the graph series and redraws
the axes. In fact it launches another Ajax query with the selected time and returns
JUDSK�GDWD�LQ�ÀQHU�JUDQXODULW\��KHQFH�WKH�SHDN�LQ�WKH�JUDSK�FDQ�EH�diagnosed
IXUWKHU��,Q�RWKHU�ZRUGV�WKH�DSSOLFDWLRQ�HQDEOHV�WKH�XVHUV�WR�YLVXDOO\�ÀOWHU�WKURXJK�D�
VHTXHQFH�RI�GLIIHUHQW�JUDSKV��$W�WKH�VDPH�WLPH�WKH�XVHUV�UHÀQH�WKH�ÀOWHUV�JUDGXDOO\�LQ�
different dimensions. This process makes the dissection of the problem into the root
cause in a prompt, intuitive, and effective fashion.

Chapter 10

[313]

Summary
In this chapter we learned the very basics of Ext JS, which is a framework for
building Rich Internet Applications (RIAs). A quick introduction was given on a
dozen Ext JS components that are likely to be used with the Highcharts extension for
Ext JS. Then we explored how to create a Highcharts component from an existing
+LJKFKDUWV�FRQÀJXUDWLRQ�LQ�D�VWHS�E\�VWHS�DSSURDFK��:H�ORRNHG�LQWR�WKH�VPDOO�VHW�
of APIs, which provided the extension module, and built a simple application with
network usage data. Finally, we took a brief look at Highcharts and Ext JS applied on
a commercial network monitoring application.

In the next chapter we will explore how to run Highcharts on the server side.

Running Highcharts on
the Server Side

In this chapter, we will learn why it is desirable to run Highcharts on the server side
and which techniques are available for use. We learn each of the techniques and
demonstrate some of them from installation to producing a chart on the server side.
Finally, a review of pros and cons of each approach is given.

�� Running Highcharts on the server side
�� Using Xvfb and web browsers (Unix solution)
�� Rhino and Batik (Java solution)
�� Node. js/Node and Node-Highcharts (JavaScript solution)
�� PhantomJS (headless webkit)
�� Comparison between the approaches

5XQQLQJ�+LJKFKDUWV�RQ�WKH�6HUYHU�6LGH

[�����]

Running Highcharts on the server side
The main reason for running Highcharts on the server side is to allow the client-
based graphing application to be automated and accessible on the server side. In
some cases, it is desirable to produce graphs at the frontend as well as delivering
automated reports with graphs at the backend. For the sake of consistency and
development cost, we would like to produce the same style of graphs at both ends.
Here are other scenarios where we may want to generate graphs on the server side:

�� The application is required to run a scheduled task on the server side. It
generates a regular summary report with graphs (for example Service Level
Agreement report) and automatically e-mails the report to clients or users
with a managerial role.

�� The nature of the data requires a long time to compute for a graph. Instead,
users send the parameters over to the server to generate a graph. Once it
LV�ÀQLVKHG��WKH�FKDUW�VHWXS�LV�VDYHG��WKHQ�WKH�XVHUV�DUH�QRWLÀHG�WR�VHH�D�OLYH�
Highcharts chart from the precomputed JSON setup.

�� The application involves a vast amount of recurring data that is only kept
for a certain period, such that from time to time data trend graphs are
automatically produced and stored in image format for the records.

Highcharts on the server side
There are four techniques to run Highcharts on the server side. Please note that
although GWT Highcharts by Moxie Group is mentioned on the Highcharts website,
this is incorrect. It is a GWT solution that provides a framework for developers to
implement web frontend in Java. All the server-side techniques have one thing in
common—the chart is eventually exported to SVG format and converted into an
LPDJH�ÀOH��7KH�ÀUVW�DSSURDFK�LV�WR�UXQ�ERWK�EURZVHU�DQG�ZHE�VHUYHU�RQ�WKH�VHUYHU�
side. The second approach is using a Java implementation of a JavaScript engine
on the server side. The third approach is to run a JavaScript webserver with a
Highcharts module. The last approach, PhantomJs, a headless Webkit engine with
JavaScript API, is the ultimate way to run server tasks in JavaScript. We explain each
approach in the following sections and explore the approaches in more detail, from
installation to producing a chart export on the server side. Throughout the chapter,
we will use Ubuntu 12.04 as our server appliance for demonstrations.

Chapter 11

[317]

Using Xvfb and web browsers (Unix solution)
This is one of the simplest methods to run JavaScript on the server side. Basically,
we start with a very lightweight headless X Server, Xvfb. Xvfb is a standard tool
that comes with Unix distribution. More information can be found at ht tp: / /
en.wikipedia.org/wiki /Xvfb. This runs a browser on the server. Before we start,
OHW
V�PDNH�VXUH�ZH�KDYH�DQ�+70/�ÀOH�WKDW�FDQ�SURGXFH�D�JUDSK�H[SRUW�

Setting up a Highcharts export example on the
client side
The example is pretty simple—create a chart and export it to SVG data. The sequence
of operations is illustrated with the following diagram:

:H�ÀUVW�LVVXH�DQ�$MD[�TXHU\�IRU�WKH�JUDSK�GDWD�DQG�FUHDWH�D�+LJKFKDUWV�JUDSK�RQFH�
the graph data is returned. It is not mandatory to use an Ajax connection for the
series data, as we can use embedding server-side language such as PHP or ASP.NET
to resolve series data before the HTML page is served.

5XQQLQJ�+LJKFKDUWV�RQ�WKH�6HUYHU�6LGH

[318]

We use Formula 1 race lap times as the graph data and the following screenshot
shows what the graph looks like:

When we see the message Stored SVG: ... at the bottom left-hand side of the
chart, it indicates that the SVG data has been sent to the server and saved into
D�ÀOH�VXFFHVVIXOO\��

If it is required to keep a backup copy of graph outputs, then it is preferable to store
LW�LQ�D�UDZ�69*�ÀOH�LQ�D�FRPSUHVVHG�IRUPDW��7KLV�LV�EHFDXVH�ZH�FDQ�UHIRUPDW�LW�WR�
any image format, resize the image without losing quality, and most importantly,
we can edit the source if we have to, such as removing the SVG group of legend
ER[�HOHPHQWV��$V�IRU�FRQYHUWLQJ�69*�GDWD�LQWR�LPDJH�ÀOHV��WKHUH�DUH�DOZD\V�WRROV�
available. For our exercise, we use a utility from Imagick package convert, which
can export SVG into different formats and includes many pre-processing features.

Chapter 11

[�����]

Let's see how we implement the whole solution; the following is the content of the
+70/�ÀOH��f1race.html :

 <script>
 <?php
 / / Get the series data via f i le, db or remote host
 echo ' var ser iesArray = ' . json_encode($series) .
 "; \n";
 ?>
 $(document) . ready(funct ion() {

 / / Create a Highcharts graph
 var gp_chart = new Highcharts.Chart({
 chart : {
 renderTo: ' container ' ,
 animat ion: false
 },
 ser ies: ser iesArray,
 t i t le: { . . . },
 credi ts: { . . . },
 . . .
 }, funct ion(chart) {

 / / Create a label 'Crash! Safety Car ' to the
 / / graph data using Highcharts Renderer

 / / Launch another Ajax query wi th the
 / / graph SVG data
 $.ajax({
 ur l : ' . /storeSVG.php ' ,
 data: {
 svg: chart .getSVG()
 },
 type: 'POST ' ,
 dataType: ' json ' ,

 / / Update the status of the SVG data
 / / stored in the server
 success: funct ion(data) {
 i f (data.bytes) {
 $(' #status ') . text("Stored SVG: "
 + data.bytes + " bytes");
 } else {

5XQQLQJ�+LJKFKDUWV�RQ�WKH�6HUYHU�6LGH

[320]

 $(' #status ') . text("Unable to" +
 "store SVG export") ;
 }

 / / At here, i t means the SVG f i le is
 / / generated and stored successful ly
 / / Close the browser i tself
 var win = window.open("","_self") ;
 win.close() ;
 }
 }) ;
 }) ;
 }) ;

Basically, before the web server serves the previous HTML page to the client
browser, the series data has been resolved and embedded inside the page. Then after
the browser loads the page and renders the graph, it invokes the callback handler
(second parameter in Highcharts.Chart). The handler exports the rendered graph
into SVG content with the chart .getSVG method and issues an Ajax query with the
content. The web server receives the SVG content and runs storeSVG .php to store
WKH�FRQWHQW�LQWR�D�ÀOH��8SRQ�WKH�UHWXUQ�RI�DQ�$MD[�UHVSRQVH��ZH�FORVH�WKH�FXUUHQW�
Firefox browser. The execution control resumes back to the caller that launches the
)LUHIR[�EURZVHU�ZLWK�WKH�+70/�ÀOH��7KLV�SURFHVV�RI�VHQGLQJ�WKH�69*�GDWD�IURP�
browser to web server all within the server side is the core of this approach.

In order to have the ability to quit the Firefox browser
from within the JavaScript execution, the Firefox browser
LV�UHTXLUHG�WR�EH�VSHFLDOO\�FRQÀJXUHG��,Q�WKH�ORFDWLRQ�ÀHOG��
type about : config and a long list of browser settings is
displayed on the screen. Set the option 'dom.allow_scripts_
to_close_windows' to True.

As the main purpose of this example is to get the SVG export, we set the chart .
animat ion and plotOpt ions.series.animat ion options to false for both initial
DQG�XSGDWH�DQLPDWLRQ�UHVSHFWLYHO\��1H[W��ZH�ZLOO�VHH�KRZ�WR�WXUQ�WKLV�+70/�ÀOH�LQWR�
a server-side solution.

Installing Xvfb and a web browser
First of all we need to install Xvfb and a web browser (here Firefox) on our
Ubuntu server. Also, make sure that fonts for X window and sound libraries
Mesa are also installed.

sudo apt-get instal l xvfb f irefox

Chapter 11

[321]

Xvfb stands for X virtual frame buffer, which is a type of X window server that
doesn't have any output to the screen. In other words, it's a fully functional X Server
without the requirement of connecting to a physical screen. We use it as a tool to run
X client programs like f irefox in the background.

Starting up the Xvfb server
This approach can be depicted by the following diagram:

The vertical line in the previous diagram divides the browser client and web server
processes, and both are running under the same physical machine, that is the server
machine. The web browser process is running in the condition of connecting its
display output to the Xvfb process. The whole export script process starts from
launching the browser until it is terminated.

First, we start running Xvfb by giving a display ID of 1. The following command
should be put in the machine run level ini t script or /etc/rc. local :

Xvfb :1 &

Once we need to export a chart to an image, we can launch a web browser to
that display.

5XQQLQJ�+LJKFKDUWV�RQ�WKH�6HUYHU�6LGH

[322]

Applying server-side change
The next step is to create the web server script, storeSVG .php, which receives the
69*�GDWD�DQG�VDYHV�LW�LQWR�D�ÀOH��

Alternatively, a slightly diverted approach that is suggested in the Highcharts forum
is to use CutyCapt with Xvfb. CutyCapt is a tool built from Qt for rendering HTML
page on the server side and takes the output directly into an image. We prefer to
save the output into SVG and use Imagick convert for quality reasons.

<?php
 / / Save the SVG data into a f i le
 $resul t[' bytes '] = f i le_put_contents("/ tmp/chart .svg",
 $_POST[' svg ']) ;
 / / Return the size of output f i le as the
 / / status of store process
 echo json_encode($resul t) ;
?>

Running the server task
Finally, we can kick start the whole process using a shell script to launch the
web browser:

#!/bin/sh

Do the cleanup f irst

rm / tmp/chart .svg

if [$# -eq 2] ; then

 param="?width=$1&height=$2"

fi

f irefox --display :1 ht tp: / / localhost /f1race.html$param

Firefox on the server side loads f1race.html , which eventually launches the Ajax
request to storesSVG.php, then the JavaScript in f1race.html will close the Firefox
browser, hence the Firefox process is terminated. The control is resumed again by the
script caller. The approach is simple and clean, and can be run concurrently.

Chapter 11

[323]

5KLQR�DQG�%DWLN��-DYD�VROXWLRQ�
Rhino is a Java implementation of the JavaScript console, which allows JavaScript
to be run within the Java environment. One of the main uses of Rhino is to combine
with Env.js (see ht tp: / /ejohn.org/blog/br inging-the-browser- to- the-
server/ and ht tp: / /www.envjs.com/), which is a simulated browser environment
written in JavaScript. As a result, JavaScript source can be executed independently
in Rhino/Env. js without relying on any real browsers. This creates an automated
environment for running JavaScript code.

This approach has been developed into a solution, Highcharts Server-side
Export (HSE). The software provides an export engine that takes an object of the
ChartOpt ions Java class, which is assembled by calling the framework (HSE) APIs.
The structure of ChartOpt ions is based on the Highcharts options hierarchy. Inside
the framework, the Rhino engine loads Env. js and Highcharts libraries including
the exporting module. This ChartOpt ions object is then converted into a Highcharts
FRQÀJXUDWLRQ�REMHFW��,W�WKHQ�FUHDWHV�D�FKDUW�DQG�FDOOV�getSVG to return a SVG content
string in the Rhino engine. Finally, the framework passes the SVG string to the
Batik transcoder library (in Java) and formats it into an image. The approach is
summarized with the following diagram; package and documentation can be found
in github at ht tp: / /gi thub.com/one2team/highcharts-serverside-export .

5XQQLQJ�+LJKFKDUWV�RQ�WKH�6HUYHU�6LGH

[324]

Node.js/Node and Node-Highcharts
(JavaScript solution)
Node is one of the most exciting developments in JavaScript. It is not only a web
server but also a platform for easily building fast, scalable network applications.
It was created by Ryan Dahl and was built from Chrome's V8 JavaScript engine.
The idea behind it is to provide a non-blocking I/O and event-driven network
application. The idea of an event-driven web server is not new and there are several
LPSOHPHQWDWLRQV�DYDLODEOH��7KH�VHUYHU�FDQ�VHUYLFH�UHTXHVWV�LQ�ERWK�HIÀFLHQF\�DQG�
scalability. Node comprises of a large selection of APIs for server tasks and runs on
Windows, Linux, and Mac OSX.

As the Node server tasks are implemented in JavaScript, it is possible to
put Highcharts into server mode (this is also documented at ht tp: / /blog.
davidpadbury.com/2010/10/03/using-nodejs- to-render- js-charts-on-
server/). In this section, we are going to set up only one server task and that is
to create a Highcharts graph, export into SVG, and return an HTTP response.

Installing Node and modules
Let's start by installing the Node server onto an Ubuntu machine:

sudo apt-get instal l nodejs npm g++

The previous command installs the Node server and other required packages
in one go. npm is a package manager tool for installing modules for Node. We
need npm because there is another Node module required to run Highcharts,
node-highcharts (see ht tp: / /gi thub.com/davidpadbury/node-highcharts).
To install node-highcharts, we run npm as the following:

npm instal l node-highcharts -g

This step will download the package source and build it using a C++ compiler. This
will also install the jsdom and context ify modules. The -g argument informs npm
to install the packages globally, that is, in the default path of node_modules. Without
the -g option, the module is installed locally to wherever npm is executed. We will
then need to load the module with the full path:

var highcharts = require(' /home/ joe/node_modules/node-highcharts ') ;

Or we need to load the module as the current directory as long as the Node server is
started at the path /home/ joe/ .

var highcharts = require(' . /node-highcharts ') ;

Chapter 11

[325]

With the option to install globally, we can load the module with the following syntax
with which it will search the non-core modules from the NODE_PATH environment:

var highcharts = require(' node-highcharts ') ;

Setting up the Node server
The next step is to set up the Node webserver running in listening mode and waiting
IRU�LQFRPLQJ�+773�UHTXHVWV��)LUVW��ZH�QHHG�WR�FUHDWH�D�VFULSW�ÀOH�exportSVG . js.
,QVLGH�WKH�VFULSW��ZH�GHÀQH�KRZ�WR�SURFHVV�+773�UHTXHVWV��

var ht tp = require(' ht tp ') ;
ht tp.createServer(funct ion (req, res) {

}) . l isten(5354, ' 127.0.0.1 ') ;

We load up the ht tp module and call the createServer method to create an
instance of the HTTP server. We call the l isten�PHWKRG�ZLWK�D�VSHFLÀF�SRUW�DQG�
accept the incoming connection from the same host; hence the server is only available
for internal use. Note that this does not interfere with the web server accepting
external HTTP connections.

Once it starts and is listening for incoming HTTP connections, whenever an HTTP
UHTXHVW�DUULYHV��WKH�KDQGOHU�GHÀQHG�LQVLGH�WKH�createServer is called. The callback
function has two arguments—one is to for incoming HTTP request � req and the
other one is HTTP response � res. In this exercise, we only program one server task
that exports a Highcharts graph to SVG.

Running the Node-Highcharts module
Inside the node-highcharts module, it relies on another module JsDom. JsDom is
like Env. js, which is a DOM implementation in JavaScript but it is developed for
Node. In a nutshell, the module internally creates a container <div> using the JsDom
module and then creates a Highcharts graph with the chart . renderTo option
pointing to the container. Note that the whole process is running on the server side
while the HTTP request is being handled. Here is how we use the module:

var ht tp = require(' ht tp ') ;
var highcharts = require(' node-highcharts ') ;

ht tp.createServer(funct ion (req, res) {

 var reqComps = require(' ur l ') .parse(req.ur l , t rue);
 var dr iver = reqComps.query.dr iver;
 var width = parseInt(reqComps.query.width, 10) | | 350;
 var height = parseInt(reqComps.query.height , 10) | | 300;

5XQQLQJ�+LJKFKDUWV�RQ�WKH�6HUYHU�6LGH

[�����]

 / / Get the series data ei ther from f i le, db or
 / / from another host
 var ser iesArray =

 / / Highcharts opt ions
 var opt ions = {
 chart : {
 width: width,
 height : height
 },
 export ing: { enabled: false },
 legend: {
 enabled: ser iesArray. length ? t rue : false
 },
 ser ies: ser iesArray,

 };

 / / Render the chart into PNG image data
 highcharts. render(opt ions, funct ion(err , data) {
 i f (err) {
 var msg = 'Error : ' + err ;
 console. log('Error : ' + err) ;
 res.statusCode = 500;
 res.wr i te(msg);
 } else {
 require(' fs ') .wr i teFi le(' / tmp/chart .png ' , data,
 funct ion() {
 console. log('Wr i t ten to chart .png ') ;
 }
) ;
 res.statusCode = 200;
 res.wr i te("Output f i le to / tmp/chart .png");
 }
 res.end() ;
 }) ;
}) . l isten(5354, ' 127.0.0.1 ') ;
console. log("Node server star ted & l istening . . .") ;

Chapter 11

[327]

Basically, we start the HTTP request callback by loading up the node-highcharts
PRGXOH��:H�WKHQ�FRQVWUXFW�WKH�FRQÀJXUDWLRQ�REMHFW�H[DFWO\�WKH�VDPH�ZD\�DV�ZH�
QRUPDOO\�GR�LQ�+LJKFKDUWV��:H�ÀQDOO\�SDVV�WKH�FRQÀJXUDWLRQ�WR�WKH�PRGXOH
V�render
method, which creates a chart, calls the getSVG method, and converts the output to
31*�GDWD��$W�WKLV�SRLQW��ZH�FDQ�HLWKHU�FKRRVH�WR�VWRUH�LQWR�D�ÀOH�RU�UHWXUQ�WKH�LPDJH�
data in the HTTP response. The following code illustrates how to return the image
content in Node instead:

 highcharts. render(opt ions, funct ion(err , data) {
 i f (err) {
 / / Wr i te error

 res.end() ;
 } else {
 res.wr i teHead(200, {
 'Content-Type ' : ' image/png ' ,
 }) ;
 res.end(data, ' binary ') ;
 }
 }) ;

Starting the Node server and issuing a URL query
To start the Node server with the server implementation and the module path, we
run the following command at the Linux startup:
NODE_PATH=/usr/ local / l ib/ node /var/www/exportSVG. js &

Then, we can run the whole chart export method by issuing a URL query. In order to
ODXQFK�D�TXHU\�RQ�WKH�VHUYHU�VLGH�ORFDOO\�ZLWK�D�VSHFLÀF�SRUW�������VHW�XS�SUHYLRXVO\�
in the createServer call), we can use the utility curl , as a part of the automation:
curl ' ht tp: / / localhost :5354/f1race.html?dr iver=kimi+raikkonen&width=450&h
eight=300 '

PhantomJS (headless webkit)
Webkit is basically the backend engine that drives the browsers such as Safari and
Google Chrome. It implements almost everything in HTML5 except the browser's user
interface. PhantomJS (found at ht tp: / /phantomjs.org/, created and maintained by
Ariya Hidayat) is a headless webkit, which means that the webkit engine can be run
as a standalone program. It is useful in a number of ways and one of them is server-
side SVG rendering. This approach is by far the cleanest and the most direct way to
export Highcharts graphs on the server side. PhantomJS is available on all the major
platforms. On Ubuntu, we install it with the following command:

sudo apt-get instal l phantomjs

5XQQLQJ�+LJKFKDUWV�RQ�WKH�6HUYHU�6LGH

[328]

However, the Ubuntu distribution is packaged with PhantomJs 1.4 in which there
have been lots of improvements since the version 1.4, especially that it doesn't rely
on using Xvfb anymore. At the time of writing, the latest stable version is 1.7 and this
is experimented with in this chapter.

Preparing the series data script
In order to export Highcharts graphs, we use PhantomJS in the following command
line format:

phantomjs highchartsExport . js ser iesData. js [width] [height]

The highchartsExport . js is the core export script executed by PhantomJS, which
we will implement in the next section, whereas seriesData. js is the mandatory
argument containing the raw series data:

var resul t = {
 "dr ivers":[{
 "name":"Jenson But ton",
 "color":"#666699",
 "laps":[146.03, 187.77, 182.67, ]
 },{
 "name":"Sebast ian Vet tel",
 "color":"#5C85FF",
 "laps":[159.18, 185.94, 182.63, ]
 },{
 "name":"Kimi Raikkonen",
 "color":"#66C266",
 "laps":[146.73, 187.7, 183.13, ]
 }]
};

Preparing the PhantomJS script
In this section, we prepare the export script, highchartsExport . js, which is
executed by PhantomJS. First of all, we need to import all the necessary modules and
ORDG�WKH�M4XHU\�DQG�+LJKFKDUWV�VFULSW�ÀOHV��E\�XVLQJ�WKH�IROORZLQJ�FRGH�

var system = require(' system ') ;
var page = require('webpage ') .create() ;
var fs = require(' fs ') ;

Chapter 11

[�����]

The previous code basically imports the PhantomJs webpage module that creates
a page object. This object encapsulates a webpage that allows us to manipulate
the page content, load JavaScript libraries into the page object space, and run the
JavaScript code in the context of the page.

page. injectJs(". . / jquery-1.7.1.min. js") ;
page. injectJs(". . /highcharts/ js/highcharts. js") ;
page. injectJs(". . /highcharts/ js/modules/export ing. js") ;

:H�ORDG�WKH�M4XHU\�DQG�+LJKFKDUWV�OLEUDU\�ÀOHV�LQWR�WKH�FRQWH[W�RI�WKH�FUHDWHG�
SDJH�REMHFW��7KH�QH[W�SDUW�LV�WR�VLPSO\�ORDG�XS�WKH�VHULHV�UHVXOW�ÀOH�seriesData.
js, provided from the command line, and build up a parameter object ready for the
WebPage.evaluate method.

/ / Load the series resul t f i le
phantom. injectJs(system.args[1]) ;

var width = parseInt(system .args[2] , 10) | | 350;
var height = parseInt(system.args[3] , 10) | | 300;

/ / Bui ld up resul t and chart size args for evaluate funct ion
var evalArg = {
 resul t : resul t ,
 width: width,
 height : height
};

/ / The page.evaluate method takes on a funct ion and
/ / executes i t in the context of page object .
var svg = page.evaluate(funct ion(opt) {

 / / Inject container , so Highcharts can render to
 $(' body ') .append(' <div id="container"></div> ') ;

 / / Bui ld up the series array from the opt . resul t
 var ser iesArray = [] ;
 $(opt . resul t .dr ivers, funct ion(idx, dr iver) {
 ser iesArray.push({
 name: dr iver .name,
 data: dr iver . laps,
 color : dr iver .color
 }) ;
 }) ;

5XQQLQJ�+LJKFKDUWV�RQ�WKH�6HUYHU�6LGH

[330]

 var chart = new Highcharts.Chart({
 chart : {
 renderTo: ' container ' ,

 },
 ser ies: ser iesArray,

 }) ;

 return chart .getSVG() ;

}, evalArg) ;

,QVLGH�WKH�IXQFWLRQ��ZH�ÀUVW�LQVHUW�D�'20�FRQWDLQHU�HOHPHQW�LQWR�WKH�ERG\�RI�WKH�
page using jQuery.append, so that Highcharts has an element that it can render to.
Then we do the usual Highcharts implementation to create the chart, export into
SVG, and return the SVG data. In order to access the series data within the function,
we call the evaluate method with the evalArg variable.

Finally, the returned SVG content is assigned to an svg variable and we call the I/O
methods from the fs�PRGXOH�WR�VDYH�LW�LQWR�D�ÀOH�

/ / Clean up data before we wr i te the resul t
i f (fs. isFi le("/ tmp/chart .svg")) {
 fs. remove("/ tmp/chart .svg");
}

fs.wr i te("/ tmp/chart .svg", svg);
phantom.exi t() ;

1RWH�WKDW�LQVWHDG�RI�ÀGGOLQJ�ZLWK�69*�FRQWHQW��we can simply create the chart and
ÀQLVK�ZLWK�WKH�evaluate call. Then we can use the page. render method to export
WKH�SDJH�FRQWHQW�GLUHFWO\�LQWR�DQ�LPDJH�ÀOH�

Chapter 11

[331]

Comparison between the approaches
$PRQJ�WKH�ÀUVW�WKUHH�DSSURDFKHV��WKH�8QL[�VROXWLRQ�LV�WKH�VLPSOHVW�RI�DOO�EHFDXVH�
as long as we have created a page that can export Highcharts graphs, we can
apply it straight to the server side; there is no need to write new code. Another
major advantage is that this approach is not restricted to any particular version of
Highcharts; what works on the client side is mirrored on the server side. We can plug
LQ�WKH�ODWHVW�UHOHDVH�RI�+LJKFKDUWV�DQG�VWLOO�LW�ZRUNV�SHUIHFWO\�ÀQH��+RZHYHU��WKH�RQO\�
downside of this approach is that it's only available on Unix platforms.

Both Highcharts' server-side Export (HSE) and Node-Highcharts solutions embed
ZLWK�VSHFLÀF�YHUVLRQ�RI�+LJKFKDUWV��ZKLFK�PD\�UHTXLUH�WKH�XSGDWLQJ�RI�WKH�SDFNDJH�
as well. At the time of writing, Node-Highcharts is internally embedded with
Highcharts 2.0.5, whereas HSE is embedded with version 2.1.4. Another slight
disadvantage with these two techniques is that there is no direct access to the chart
object. If we want to create additional SVG labels or shapes inside the graph through
chart . renderer methods (such as the Crash! Safety Car label in our example), then
it is not straightforward.

PhantomJS is a real solution for running server-side JavaScript and the good news
is that Highcharts 3.0 will be fully supporting this scheme by the time this book
hits the shelf. Check out ht tp: / /export .highcharts.com/demo.php for the
server-side demo.

Generating a server-side Highcharts image will be as simple as running the
following command:

highcharts-convert . js - inf i le URL -outf i le f i lename -scale 2.5 -width 300
-constr [Chart | StockChart] -cal lback cal lback. js

The code terms used in the preceding command are described, as follows:

�� inf i le is the location of Highcharts FRQÀJXUDWLRQ�ÀOH
�� constr is to instruct the export process to output a Highcharts or

Highstock chart
�� cal lback�H[HFXWHV�WKH�-DYD6FULSW�ÀOH�RQFH�WKH�VHUYHU�H[SRUW�SURFHVV�LV�ÀQLVKHG

5XQQLQJ�+LJKFKDUWV�RQ�WKH�6HUYHU�6LGH

[332]

Summary
In this chapter, we described the purpose for running Highcharts on the server side
and we surveyed four different techniques to do so—Unix solution with browser
running in X virtual frame buffer, Java solution using Rhino and Batik, JavaScript
solution by using Node. js webserver and Highcharts module, and by using the
PhantomJS script.

We described each solution and demonstrated them right from installation to
execution, for both Unix and JavaScript approaches. At the end, we compared the
merits of each of the solutions.

So far we have accomplished and understood how easy it is to create dynamic and
stylish HTML5 charts using Highcharts. The next major release is version 3.0 and
this will have even more reasons to consider using Highcharts. There will be new
series of charts, such as funnel, box plot, waterfall, bubble, and thresholding. By
then, hopefully, I will have another opportunity to bring you a new edition. On that
bombshell, thank you for reading and for your support.

Index
Symbols
$.ready jQuery 283
$.ready method 175, 252, 254
<div> tag 138
-g option 324
<script> tag 257

A
Abstract Window Toolkit (AWT) 9
adapters directory 23
Add button 241
Add & Plot button 178, 180
addSeries event 241
addSeries function 241
addSeries method 242, 301
Adobe Shockwave Flash (client side)

about 11
advantages 11
disadvantages 11

Ajax query, top-level chart
launching, with chart load event 221

align property, chart label properties 36
allowDecimals option 82
allowPointSelect option 133, 221
amCharts 16
AppQoS 311, 312
area chart

sketching 86-89
area spline chart 86
automatic layout, Highcharts

layout 34, 41-43
Average line 239

Axis.addPlotLine, Highchart APIs
using 192

axis class 175
D[LV�FRQÀJXUDWLRQ

about 45
axis data type, accessing 45-48
axis lines alignment, resolving issues 52, 53
background, accessing 48, 49
intervals, accessing 48-52
multiple axes, extending to 57-61
plot bands, using 53-56
plot lines, using 53-56

axis data type
accessing 45-47

Axis.getExtremes, Highchart APIs
using 192

axis title alignment 39

%
bar charts

about 106, 116, 117
looks, modifying 118, 119

baseLength option 157
baseWidth option 157

C
callback function 175, 331
callback handler, tool tips

using 70
canvas

about 14
code, example 14, 15

categories option 26
center option 144, 154

[334]

chart. See also JavaScript charts
chart

building, with multiple series type 142-145
multiple plies, plotting 137, 138
polishing, with fonts and colors 158, 159
sticking together 128, 129

Chart.addSeries, Highcharts APIs
about 183
new series, displaying 180
using, to reinsert series with new

data 201-203
chart.alignTicks option 153
chart.animation option 320
chart class 174
chart click event, detail chart

applying 229-234
chart component 32
FKDUW&RQÀJ�RSWLRQ�����
FKDUW&RQÀJ�SURSHUW\�����
FKDUW�FRQÀJXUDWLRQV��+LJKFKDUWV�$3,V�����
chart draw event, top-level chart

user interface, activating 222
chart.events.load handler 175
Chart.get method, Highcharts

components 176
and object hierarchy, using 177
using 177

Chart.getSelectedPoints, Highchart APIs
using 193, 194

Chart.getSVG, Highcharts APIs
SVG data, extracting 186-189

chart.getSVG method 320
chart.inverted option 83, 116
chart label properties

about 36
align property 36
axis title alignment 39
credits alignment 40
ÁRDWLQJ�SURSHUW\����
legend alignment 39
margin property 37
subtitle alignment 38, 39
title alignment 38, 39
verticalAlign property 37
x property 37
y property 37

chart load event, top-level chart
Ajax query, launching 221

chart margin setting 35, 36
chart object 216
ChartOptions object 323
chartOptions parameter 186
chart.polar option 161
Chart.renderer methods, Highchart APIs

using 193, 194
chart selection event

used for zooming selected area 223, 224
chart.selectionMarkerFill option 224
chart.showLoading method 180
class model, Highcharts

about 174
axis class 175
chart class 174
point class 175
renderer class 174
series class 174

click event 258, 265, 275
click event, detail chart

plot line action, setting 235, 237
click event function 248
click event handler 237
click handler 276
Color object 140
colors gradient

about 74
linearGradient 74
stops 75

column charts
about 106
colum colors and data labels,

adjusting 113-116
columns in stacked percentage,

comparing 112
grouping 109, 110
overlapped 108
stacked and single columns,

mixing 111, 112
stacking 109, 110

columns
colors, adjusting 113-116
in stacked percentage, comparing 112

Common Gateway Interface (CGI) 8
connectNulls option 96, 98

[335]

constr 331
contextify module 324
context menu, Highcharts extension

displaying, on data point 309, 310
createChart method 262
createServer call 327
credits alignment 40
credits.position property 40
FURVVKDLUV�FRQÀJXUDWLRQ����
Customer Data Attributes 250
CutyCapt tool 322

D
dashStyle option 68
data

drilling, with point click event 273, 274
GDWD�ÀHOG����
dataIndex option 291
data labels

adjusting 113-116
dataLabels.distance option 140
dataLabel settings 117
dataLabels.formatter option 133
data point, detail chart

hovering, with mouseOut point
event 228, 229

hovering, with mouseOver point
event 228, 229

data points, Highchart APIs
selecting 191
updating, with Point.update 203-206

data point, top-level chart
selecting with point select 222, 223
uselecting with unselect events 222, 223

datetime scale 148
datetime type 179
deliverChart method 188
detail chart

about 226, 227
chart click event, applying 229-234
mouse cursor over plot lines, changing with

mouseover event 235
mouseOut, used for hovering over data

point 228, 229
mouseOver, used for hovering over data

point 228, 229

VHULHV�FRQÀJXUDWLRQ��FRQVWUXFWLQJ�����
device properties

detecting 260
dial option 156
directories, Highcharts

adapters 23
examples 22
exporting-server 23
graphics 22
index.html 22
is 23
themes 23

donut chart
preparing 139-141

donut charts, Highcharts extension
plotting 299, 300

draw method 302
duration, animation jQuery 73
dynamic content dialog

creating, with point click event 275-277

E
easing, animation jQuery 73
examples directory 22
exportChart method 186
exporting component 32
exporting-server directory 23
export modules 302
Ext.decode 288
extension

URL, for downloading 282
Ext JS 4 Charts 16
Ext JS code

implementing 283
loading 283

Ext JS components
about 283
accessing 284, 285
Ajax 288
creating 284
Ext JS code, implementing 283
Ext JS code, loading 283
JsonStore 289
panel 286
store 289
viewport class 285

[�����]

window 288
Ext.onReady 283

F
Fiat 500 speedometer, twin dials chart

plotting 148, 149
À[HG�OD\RXW��+LJKFKDUWV�OD\RXW������������
ÁDVK9DUV����
ÁRDWLQJ�SURSHUW\��FKDUW�ODEHO�

properties 37, 38, 103
Flot 17
Flotr 17
fontWeight option 134
formatter function 48, 122
formatter option 82
formatWithLineBreakst method 133
FormPanel 287
fs module 330
FusionCharts 17
fx option 170
fy option 170

G
gauge chart

about 147
radial gradient, using 167-170
speedometer gauge chart, plotting 148

gauge chart pane
axes with different scale, managing 152
backgrounds, setting 150, 151
multiple panes, extending to 153-155
plotting 149, 150

gauge series
dial and pivot 156-158
plotOptions.gauge.dial 156
plotOptions.gauge.pivot 156

gesturechange (pinch actions) event
applying, to pie chart 277-280

gesturestart event 277
get method 177
getSVG method 186, 327
gold_chart page block 260
gold medals page

loading up 259, 260
Google Web Toolkit (GWT) 281
graphics directory 22

graph options
switching, with jQuery Mobile

dialog box 266-268
graph orientation

switching, with orientationchange
event 271-273

graph presentation
changing, with swipeleft motion event 269

GridPanel content 287, 290
groupPadding 108

H
Highcharts

about 18, 131
and JavaScript frameworks 18
and jQuery Mobile 249
and jQuery Mobile integrating,

Olympic Medals Table application
used 258, 259

animating 72
APIs 20, 173
area charts 86
area spline chart 86
D[LV�FRQÀJXUDWLRQ����
bar charts 106, 116
class model 174, 175
column charts 106
FRQÀJXUDWLRQ��VWUXFWXUH����
directories 22
directories, structure 22-25
donut chart 139
gauge chart 147
gauge chart pane, plotting 149, 150
in touch screen environments 258
layout 32-34
license 20
line charts 79
mirror chart 120
online documentation 20, 21
openness (feature request with

user voice) 22
polar chart 147
presentation 19, 20
range chart 147
scatter series 98, 99
single bar chart 126

[337]

source code and demo, URL 142
tutorial 22
using, under MooTools environment 18
using, under prototype 18

Highcharts 3.0 331
Highcharts and jQuery Mobile

integration. See Olympic Medals
Table application

Highcharts animation
duration, animation jQuery 73
easing, animation jQuery 73
initial animation 72
update animation 72

Highcharts APIs
about 177, 178
Axis.addPlotLine, using 192
Axis.getExtremes method, using 192
Chart.addSeries, used to reinsert series with

new data 201-203
FKDUW�FRQÀJXUDWLRQ�����
Chart.getSelectedPoints, using 193, 194
Chart.renderer method, using 193, 194
continuous series update 196-198
data point, selecting 191
data points, updating with

Point,update 203-206
multiple series, displaying with

AJAX calls 184
multiple series, displaying with

multiple series 186
new series, displaying with

Chart.addSeries 180-183
performance, comparing on large

datasets 211, 212
plot lines, adding 191
points, adding with

Series.addPoint 206-209
points, removing with

Point.remove 206-209
Series.remove, used to reinsert series with

new data 201-203
Series.setData new data set,

applying 199, 200
series update, exploring 194, 195
SVG animations, performance on

browsers 209, 210
SVG data, extracting with

Chart.getSVG 186-190
Highcharts chart

plotting, on mobile device 261-266
Highcharts.Chart 175
Highcharts.Chart callback parameter 175
Highcharts.colors property 59
Highcharts components

Chart.get method, using 177
navigating 176
object hierarchy, using 176, 177

+LJKFKDUWV�FRQÀJXUDWLRQ
about 31
chart component 32
exporting component 32
legend component 32
plotOptions component 32
series component 32
title/subtitle component 32
tooltip component 32
URL 31
xAxis/yAxis component 32

Highcharts constructor 175
Highcharts events

about 216
list 216
portfolio history example 217
stocks growth chart example 237, 238

Highcharts export example
setting, on client side 317-320

Highcharts extension
about 282
addSeries method 301
context menu displaying,, by data

point click 309, 310
creating 293, 294
data model, converting into

Highcharts series 295
donut charts, plotting 299, 300
draw method 302
export modules 302
�FRQÀJ��FRQYHUWLQJ�WR�����
Highcharts options, removing 291, 292
module APIs 300
numerical values, for x axes 296
numerical values, for y axes 296
pie charts, plotting 298
pre-processing, performing from

[338]

store data 297, 298
removeAllSeries method 301
removeSerie method 301
series option constructing, by mapping

JsonStore data model 293
VHULHV�VSHFLÀF�RSWLRQV��SDVVLQJ�����
setSubTitle method 301
setTitle method 301
X-axis category data 295
y-axis numerical value 295

Highcharts layout
about 32, 33
automatic layout 34, 41-43
chart label, properties 36, 37
chart margins setting 35, 36
À[HG�OD\RXW�����������
spacing setting 35, 36

Highcharts options, Highcharts extension
removing 291, 292

Highcharts, running on server side
about 316
Highcharts export example, setting up on

client side 317-320
Highcharts Server-side Export (HSE) 323
modules, installing 324
Node-Highcharts module, running 325, 327
node, installing 324
node server, setting up 325
node server, starting 327
PhantomJS (headless webkit) 327
PhantomJS Script, preparing 328-330
Rhino 323
series data script, preparing 328
Server-side Change, applying 322
server task, running 322
URL query, issuing 327
web browser, installing 320
Xvfb and web browsers (Unix solution)

used 317
Xvfb, installing 320
Xvfb server, starting up 321

Highcharts series, Highcharts extension
data odel, converting into 295

Highcharts server-side Export (HSE) 331
High & Low range series 166
histStock variable 197
horizontal gauge chart

single bar chart, converting to 126, 127
href value 256
HTML

tool tips, formatting 69, 70
HTML5 12
HTML image map (server-side technology)

advantages 8
disadvantages 9

I
idProperty 290
idx parameter 301
ImageMagick package

URL 189
img src attribute 8
index.html directory 22
LQÀOH�����
initial animation 72, 73
innerRadius option 150, 155
innerSize option 140
Internet Application (RIA) 281
inverted option 85, 272
is directory 23
itemId option 285

J
Java Applet (client side) 9
JavaScript 12
JavaScript charts

amCharts 16
Ext JS 4 Charts 16
Flot 17
Flotr 17
FusionCharts 17
jqPlot 15
JS Charts 17
YUI 3 Charts 16

JavaScript library
URL 12

JFreeChart 10
jQM

about 249

[�����]

and Highcharts integrating, Olympic
Medals Table application
used 258, 259

mobile pages, linking between 256, 257
mobile page structure 250, 251
page initialization 252-255

jqPlot 15
JQuery library

URL 12
jQuery Mobile. See jQM
jQuery Mobile and Highcharts integration.

See Olympic Medals Table
application

jQuery Mobile dialog box
graph options, switching with 266-268

JS Charts 17
jsdom module 324
JsonStore

using, example for 289
JsonStore class 289
JsonStore data model, Highcharts extension

mapping, to construct series option 293

L
labels.formatter 155
layout option 285
legend alignment 39
legend box, pie chart

anabling 136
legend component 32
line and area series

about 90
charts with missing data, plotting 96-98
projection chart, simulating 90, 92
spline, constrasting with step line 92, 93
stacked area chart, extending to 93-95

linearGradient, colors gradient 74-78
linear scale 148
line charts

about 79
display 80
multiple series line charts,

extending to 82-85
lineWidth property 50
logarithmic scale 148
logo.png 103

M
mapping option 290
margin option 35
margin property, chart label properties 37
marginTop property 36
market index data

range charts, plotting with 164-167
maxPadding option 143
minorTickPosition 152
mirror chart

about 120-123
stacked mirror chart, extending to 124, 125

mobile pages, jQM
linking between 256, 257

mobile page structure
in HTML document, example 250

mobile page structure, jQM 250, 251
Modify Stop Order dialog box 235, 237
Module APIs, Highcharts APIs 300
mouse cursor, detail chart

over plot lines, changing with
mouseover event 235

mouseOut event 258
mouseOut point event, detail chart

used, for hovering over data point 228, 229
mouseOver event 258
mouseOver point event, detail chart

used, for hovering over data point 228, 229
multiple series

multiple plies, plotting 137, 138
multiple series line charts

extending to 82, 83
multiple series tool tip

applying 71, 72
multiple series type

chart, building with 142-145
mutt

URL 189

N
netStore object 291
NetworkData data model 290
node 324
node-highcharts module 327

[340]

Node-Highcharts module
running 325, 327

Node-Highcharts solution 331
node server

installing 324
setting up 325
starting 327

numberFormat method 82

O
object hierarchy, Highcharts components

and Chart.get method, using 177
using 176

object tag 11
Olympic Medals Table application

device properties, detecting 260
gold medals page, loading 259, 260
graph options, switching with jQuery

Mobile dialog box 266-269
graph presentation, changing with

swipeleft motion event 269, 270
graph presentation with orientationchange

event 271-273
Highcharts chart, plotting on mobile

devices 261-266
used, for integrating Highcharts and

jQuery Mobile 258, 259
Open & Close area range series 166, 167
opposite property 59
options button 266
orientationchange event

graph orientation, switching 271-273
outerRadius option 150

P
pageinit event handler 253, 256
pageinit handler 255, 268
page initialization, jQM 252-255
pane

about 148
multiple panes, extending to 153-155

panel
about 286
FormPanel 287
GridPanel 287
TabPanel 287

PhantomJS 316, 327
PhantomJS Script

preparing 328, 330
pie chart

about 131
FRQÀJXULQJ��ZLWK�VOLFHG�RII�

sections 133-135
gesturechange (pinch actions)

event,applying 277-280
launching, with series checkboxClick

event 244, 245
legend, applying 136
multiple plies, plotting in chart 137, 138
plotting 132

pie_chart.php 8
pie-charts, Highcharts extension

plotting 298
pie chart, stocks growth chart example

slice, editing with point click event 246-248
slice, editing with remove event 246-248
slice, editing with update event 246-248

Plot All button 178
plotBackgroundImage option 102
plot bands 53, 55
plotGoldChart method 265, 273
plot line action, detail chart

setting, with click event 235, 237
plot lines 53, 55
plotLinesAndBands property 235
plot lines, Highchart APIs

adding 191
PlotOptions

about 63, 64
FKDUW�FRQÀJXUDWLRQ�FRGH��IRU�SUHFHGLQJ�

graph generation 65-68
plotOptions.line.lineWidth property 63
plotOptions.pie.center property 63
stacking option 67

plotOptions component 32
plotOptions.gauge.dial 156
plotOptions.gauge.pivot 156
plotOptions.line.lineWidth property 63
plotOptions.pie.center property 63
plotOptions property 26
plotOptions.series.animation option 320
plotOptions.series option 26
point class 174, 175

[341]

point click event
dynamic content dialog, creating 275-277
used, for drilling data 273, 274
used, for editing pie chart slice 246-248

point.events option 221
pointFormat 70
pointPadding 108
point select

used, for selecting data point 222, 223
pointStart option 81
pointStart property 90
Point.update, Highchart APIs

used, for updating data points 203-209
polar chart

about 147
spline chart, converting to 160-164

Portfolio Detail section 222
portfolio history example

about 217, 218
detail chart 226, 227
top-level chart 219

projection chart
simulating 90, 92

R
radar chart

spline chart, converting to 160-164
radial gradient

about 167
using, on gauge chart 167-170

radialGradient feature 151
range chart

about 147
plotting, with market index data 164-167

rearLength option 157
removeAllSeries method 301
Remove button 247
remove event

used, for editing pie chart slice 246-248
Remove Order button 237
removeSeries method 301
renderer class 174
renderer.image method 102, 145
renderTo option 25
Rhino 323
rotation option 150

UXOHÁRZ��See Drools Flow

S
Save Order button 230
Scalable Vector Graphics. See SVG
scatter and area series

chart, polishing with artistic style 100-103
combining 98, 99

selected area
zooming, chart selection event

used 223, 224
selection event 223
Sencha Ext JS 281
series checkboxClick event

pie chart, launching with 244, 245
series class 174, 175
series component 32
VHULHV�FRQÀJ����
VHULHV�FRQÀJXUDWLRQ��GHWDLO�FKDUW

constructing 227
VHULHV�FRQÀJXUDWLRQ��WRS�OHYHO�FKDUW

constructing 220, 221
series.data macro 70
series data script

preparing 328
series option, Highcharts extension

constructing, by mapping JsonStore
data model 293

series property 27, 61-64
Series.remove

about 201
using, to reinsert series with

new data 201-203
VHULHV�VSHFLÀF�RSWLRQV��+LJKFKDUWV�H[WHQVLRQ

passing 295
series update, Highchart APIs

Chart.addSeries, using to reinsert series
with new data 201-203

exploring 194-198
Series.remove, using to reinsert series with

new data 201-203
Series.setData, new data set

applying 199, 200
techniques 198

[342]

server task
running 322

Servlet (server side)
about 9, 10
advantages 10
disadvantages 11

setSubTitle method 301
setTitle method 301
6KRFNZDYH�)ODVK��6:)��ÀOHV����
showCheckbox option 242
showInLegend property 88
Show Point Value checkbox 191
Show Range action 192
single bar chart

converting, to horizontal gauge
chart 126, 127

size option 144
slicedOffset option 133, 135
sliced property 134, 135
spacingBottom 89
spacing setting 35, 36
speedometer gauge chart

plotting 148
spline

contrasting, with step line 92, 93
spline chart

converting, to polar chart 160-164
converting, to radar chart 160-164

stacked and single columns
mixing 111

stacked area chart
extending to 93-95

stacked mirror chart
extending to 124, 125

stacking option 67, 111
stocks growth chart example

about 237, 238
averaging series from displayed stocks

series, plotting 238-242
dialog, launching with series

click event 243
pie chart, launching with series

checkboxClick event 244, 245
pie charts slice, editing with point-click

event 246-248
pie charts slice, editing with remove

event 246-248

pie charts slice, editing with update
event 246-248

stop order 229
stops, colors gradient 75, 76
Stop Timing button 211
Store class 289
store data, Highcharts extension

pre-processing performing 297, 298
SVG

about 12
code, executing 13
script 13

SVG animation, Highcharts APIs
performance, exploring on

browsers 209, 210
SVG data, Highcharts APIs

extracting, wth Chart.getSVG 186-189
svg variable 330
swipeleft motion event

graph presentation, changing 269
Synchronized Multimedia Integration

Language (SMIL) 12

T
TabPanel 287
themes directory 23
'this' keyword 224, 274
this.point variable 70
this.series variable 70
tickInterval option 148
tickLength property 51
tickPosition 152
tickWidth property 51
title/subtitle component 32
tooltip component 32
tooltip.enabled 68
tool tips

callback handler, using 70
in HTML, formatting 69, 70
multiple series tool tip, applying 71, 72
styling 68

top-level chart
about 219
Ajax query, launching with chart load

event 221

[343]

data point, selecting with point
select 222, 223

data point, uselecting with unselect
events 222, 223

selected area zooming, chart selection
event used 223, 224

VHULHV�FRQÀJXUDWLRQ��FRQVWUXFWLQJ����������
user interface, activating with chart

redraw event 222
touch screen environments

Highcharts in 258
twin dials chart

Fiat 500 speedometer, plotting 148, 149

U
Unix solution 331
unselect event handler 223
unselect events

used, for unselecting data point 222, 223
update animation 72
update button 268
update event

used, for editing pie chart slice 246-248
Update Portfolio dialog box 247
user interface, top-level chart

activating, with chart redraw event 222

V
verticalAlign property 39
verticalAlign property, chart label

properties 37
vgchartz

URL 132

W
web charts

about 7
Adobe Shockwave Flash (client side) 11
HTML image map (server-side

technology) 8

Java Applet (client side) and Servlet
(server side) 9, 10

web fonts
URL 158

window 288
window class 284

X
x axes, Highcharts extension

numerical values 296
xAxis.categories array 27
X-axis category data, Highcharts

extension 295
[$[LV�FRQÀJ����
xAxis.labels.formatter property 48
xAxis property 26, 175
xAxis/yAxis component 32
xField option 293
x property, chart label properties 37
xtype option 284
Xvfb

about 317
installing 321
server-side change, applying 322
server, starting 321

X virtual frame buffer. See Xvfb

Y
y axes, Highcharts extension

numerical values 296
Y-axis category data, Highcharts extension

295
yAxis option 155
yAxis properties 175
y property, chart label properties 37
YUI 3 Charts 16

Thank you for buying
Learning Highcharts

About Packt Publishing
3DFNW��SURQRXQFHG�
SDFNHG
��SXEOLVKHG�LWV�ÀUVW�ERRN��0DVWHULQJ�SKS0\$GPLQ�IRU�(IIHFWLYH�
0\64/�0DQDJHPHQW" in April 2004 and subsequently continued to specialize in publishing
KLJKO\�IRFXVHG�ERRNV�RQ�VSHFLÀF�WHFKQRORJLHV�DQG�VROXWLRQV�

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
WR�JHW�WKH�MRE�GRQH��3DFNW�ERRNV�DUH�PRUH�VSHFLÀF�DQG�OHVV�JHQHUDO�WKDQ�WKH�,7�ERRNV�\RX�KDYH�
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www .packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
ZRXOG�OLNH�WR�GLVFXVV�LW�ÀUVW�EHIRUH�ZULWLQJ�D�IRUPDO�ERRN�SURSRVDO��FRQWDFW�XV��RQH�RI�RXU�
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

)XVLRQ&KDUWV�%HJLQQHU
V�
*XLGH��7KH�2I¿FLDO�*XLGH�IRU�
FusionCharts Suite
ISBN: 978-1-849691-76-5 Paperback: 252 pages

Create interactive charts in JavaScript (HTML5) and
Flash for your web and enterprise applications

1. Go from nothing to delightful reports and
dashboards in your web applications in
super quick time

��� &UHDWH�\RXU�ÀUVW�FKDUW�LQ����PLQXWHV�DQG�
customize it both aesthetically and functionally

3. Create a powerful reporting experience with
advanced capabilities like drill-down and
JavaScript integration

gnuplot Cookbook
ISBN: 978-1-849517-24-9 Paperback: 220 pages

Over 80 recipes to visually explore the full range
of features of the world's preeminent open source
graphing system

1. See a picture of the graph you want to make
DQG�ÀQG�D�UHDG\�WR�UXQ�VFULSW�WR�SURGXFH�LW

2. Working examples of using gnuplot in your
own programming language... C, Python,
and more

3. Find a problem-solution approach with
practical examples enriched with good pictorial
illustrations and code

Please check www.PacktPub.com for information on our titles

-DVSHU5HSRUWV�����
Development Cookbook
ISBN: 978-1-849510-76-9 Paperback: 396 pages

Over 50 recipes to create next-generation reports
using JasperReports

1. Create, size, and position the titles, headers,
footers, and body of your report using
JasperReports and iReport

2. Enhance the look and feel of your report using
background images, watermarks, and other
such features

3. Create multi-page and multi-column reports
using multiple types of data in the same report

4. Generate reports from Java Swing applications
or from your web application

iReport 3.7
ISBN: 978-1-847198-80-8 Paperback: 236 pages

Learn how to use iReport to create, design, format,
and export reports

1. A step-by-step, example-oriented tutorial
with lots of screenshots to guide the reader
seamlessly through the book

2. Generate enterprise-level reports using
iReport 3.7

3. Give your reports a professional look with built
in templates

4. Create master/detail reports easily with the
sub-report feature

Please check www.PacktPub.com for information on our titles

