IPC-A-600

Revision K – July 2020 Supersedes Revision J May 2016

Acceptability of Printed Boards

Developed by

0

The Principles of In May 1995 the IPC's Technical Activities Executive Committee (TAEC) adopted Principles of Standardization Standardization as a guiding principle of IPC's standardization efforts. **Standards Should: Standards Should Not:** Inhibit innovation • Show relationship to Design for Manufacturability (DFM) and Design for the Environment (DFE) Increase time-to-market • Minimize time to market • Keep people out • Contain simple (simplified) language • Increase cycle time • Just include spec information • Tell you how to make something • Focus on end product performance · Contain anything that cannot · Include a feedback system on use and be defended with data problems for future improvement Notice IPC Standards and Publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for his particular need. Existence of such Standards and Publications shall not in any respect preclude any member or nonmember of IPC from manufacturing or selling products not conforming to such Standards and Publication, nor shall the existence of such Standards and Publications preclude their voluntary use by those other than IPC members, whether the standard is to be used either domestically or internationally. Recommended Standards and Publications are adopted by IPC without regard to whether their adoption may involve patents on articles, materials, or processes. By such action, IPC does not assume any liability to any patent owner, nor do they assume any obligation whatever to parties adopting the Recommended Standard or Publication. Users are also wholly responsible for protecting themselves against all claims of liabilities for patent infringement. **IPC** Position It is the position of IPC's Technical Activities Executive Committee that the use and implementation Statement on of IPC publications is voluntary and is part of a relationship entered into by customer and supplier. **Specification** When an IPC publication is updated and a new revision is published, it is the opinion of the TAEC **Revision Change** that the use of the new revision as part of an existing relationship is not automatic unless required by the contract. The TAEC recommends the use of the latest revision. Adopted October 6, 1998 Why is there Your purchase of this document contributes to the ongoing development of new and updated industry a charge for standards and publications. Standards allow manufacturers, customers, and suppliers to understand this document? one another better. Standards allow manufacturers greater efficiencies when they can set up their processes to meet industry standards, allowing them to offer their customers lower costs. IPC spends hundreds of thousands of dollars annually to support IPC's volunteers in the standards and publications development process. There are many rounds of drafts sent out for review and the committees spend hundreds of hours in review and development. IPC's staff attends and participates in committee activities, typesets and circulates document drafts, and follows all necessary procedures to qualify for ANSI approval. IPC's membership dues have been kept low to allow as many companies as possible to participate. Therefore, the standards and publications revenue is necessary to complement dues revenue. The price schedule offers a 50% discount to IPC members. If your company buys IPC standards and publications, why not take advantage of this and the many other benefits of IPC membership as well? For more information on membership in IPC, please visit www.ipc.org or call 847/597-2809. Thank you for your continued support.

IPC-A-600K

Acceptability of Printed Boards

If a conflict occurs between the English and translated versions of this document, the English version will take precedence.

Developed by the IPC-A-600 Task Group (7-31a) of the Product Assurance Committee (7-30) of IPC

Supersedes:

IPC-A-600J - May 2016 IPC-A-600H - April 2010 IPC-A-600G - July 2004 IPC-A-600F - November 1999 Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC 3000 Lakeside Drive, Suite 105N Bannockburn, Illinois 60015-1249 Tel 847 615.7100 Fax 847 615.7105 This Page Intentionally Left Blank

Acknowledgment

Any document involving a complex technology draws material from a vast number of sources across many continents. While the principal members of the A-600 Task Group (7-31a) of the Product Assurance Committee (7-30) are shown below, it is not possible to include all of those who assisted in the evolution of this standard. To each of them, the members of IPC extend their gratitude. Special thanks goes to the members of the Rigid Printed Board Committee (D-30) for their efforts in establishing acceptance criteria for printed boards.

Product Assurance Committee

Chair Robert Cooke NASA Johnson Space Center Vice-Chair Debbie Wade Advanced Rework Technology-A.R.T

IPC-A-600 Task Group

Co-Chair Scott Bowles Lockheed Martin Space Systems Company Co-Chair Denise Charest Amphenol Printed Circuits, Inc.

Technical Liaison of the IPC Board of Directors

Bob Neves Microtek (Changzhou) Laboratories

IPC-A-600 Task Group

Elizabeth Allison, NTS - Baltimore David Anderson, Raytheon Company Norman Armendariz, Raytheon Company Lance Auer, Conductor Analysis Technologies, Inc. Jimmy Baccam, Lockheed Martin Missiles & Fire Control John Bauer, Collins Aerospace Phil Befus, Honeywell Aerospace James Blanche, NASA Marshall Space Flight Center Steven Bowles, DuPont SVTC Mark Buechner, BAE Systems Michael Chang, Northrop Grumman Corporation Thomas Clark, Lockheed Martin Missiles & Fire Control Michael Collier, Teledyne Leeman Labs Robert Cooke, NASA Johnson Space Center Cesar De Luna, NTS - Anaheim Francesco Di Maio, GESTLABS S.r.l. Don Dupriest, Lockheed Martin Missiles & Fire Control Julie Ellis, TTM Technologies Richard Etchells, Electronic Technology **Resource Partners** Gary Ferrari, FTG Circuits William Fox, Lockheed Martin Missile & Fire Control Mahendra Gandhi, Northrop Grumman Space Systems Gonzalo J Garcia Leypon, Cirexx International, Inc.

Herb Girtz, Holaday Circuits Inc. Constantino Gonzalez, ACME Training & Consulting Pierre-Emmanuel Goutorbe, Airbus Defence & Space Vicka Hammill, Honeywell Inc. Air Transport Systems Hardeep Heer, FTG Circuits Philip Henault, Raytheon Joshua Huang, Nvidia Corporation Emma Hudson, Emma Hudson Technical Consultancy Ltd Frank Huijsmans, PIEK International **Education Centre** Henrik Jensen, Gaasdal Bygningsindustri A/S Joseph Kane, BAE Systems Allen Keeney, Johns Hopkins University Maan Kokash, BAE Systems Nick Koop, TTM Technologies Kelly Kovalovsky, BAE Systems Kevin Kusiak, Lockheed Martin Corporation Meredith LaBeau, Calumet Electronics Corp. Jeremy Lakoskey, Honeywell International Leo Lambert, EPTAC Corporation Christina Landon, NSWC Crane David Lee. BMK Professional Electronics Gmb Minsu Lee, Korea Printed Circuit Association Peggy LeGrand, TTM Technologies Andrew Leslie, BAE Systems

Jeff Lewis, Holaday Circuits Inc. Peter Lindhardt, TTM Technologies -Logan Division Dan Loew, L3Harris Jennifer Ly, BAE Systems Todd MacFadden, Bose Park Place Manufacturing Chris Mahanna, Robisan Laboratory Inc. Tabishur Malik, TTM Technologies Tim McKliget, Holaday Circuits Inc. Melissa Meagher, Raytheon Missile Systems Michael Miller, NSWC Crane James Monarchio, TTM Technologies Steven Murray, Northrop Grumman Corporation Robert Neves, Microtek Laboratories China Thi V. Nguyen, Lockheed Martin Missile & Fire Control Jamie Noland, Blackfox Training Institute Gerard O'Brien, Solderability Testing & Solutions, Inc. Gianluca Parodi, IIS Progress SRL Gerry Partida, Summit Interconnect -Anaheim Helena Pasquito, EPTAC Corporation Yogen Patel, Candor Industries Inc. Jan Pedersen, Elmatica AS Stephen Pierce, SGP Ventures, Inc. John Potenza, Lockheed Martin Mission Systems & Training Randy Reed, R. Reed Consultancy LLC

Acknowledgment (cont.)

Owen Reid, Lockheed Martin Missiles & Fire Control	Hans Shin, Pacific Testing Laboratories, Inc.	Bradley Toone, L3Harris Communications Paul Van Dang, Innovative Circuits	
Curtis Ricotta, Lockheed Martin Space	Patrick Smith, Cirexx International, Inc.	0,	
Systems Company	David Sommervold, Henkel US	Crystal Vanderpan, UL LLC	
Jose Rios, Raytheon	Operations Corp.	Pietro Vergine, Advanced Rework	
Nef Rios, Summit Interconnect - Anaheim	Brian Stevens, Collins Aerospace	Technology-A.R.T	
Kris Roberson, Bandjwet Enterprises, Inc.	, ,	Adeodato Vigano, Compunetics Inc.	
D/B/A BEST	Marshall Stolstrom, TTM Technologies,	0 / 1	
Thomas Romont, IFTEC	Inc.	Jennet Volden, Collins Aerospace	
Christina Rutherford, Honeywell Aerospace	Stephanie Stork, L3Harris Communications	Debbie Wade, Advanced Rework Technology-A.R.T	
Gilbert Shelby, Raytheon Systems	Ingrid Swenson, TTM Technologies, Inc.	Rob Walls, PIEK International Education	
Company	Audra Thurston, Calumet Electronics	Centre (I.E.C.) BV	
Russell Shepherd, NTS - Anaheim	Corp.		

A special note of thanks goes to Curtis Ricotta of Lockheed Martin Space Systems Company and Denise Charest of Amphenol Printed Circuits, Inc. for supplying a significant amount of new photographs for this revision.

Table of Contents

Acknowledgment	iii
1 Introduction	1
1.1 Scope	1
1.2 Purpose	1
1.3 Approach To This Document	1
1.4 Classification	1
1.5 Acceptance Criteria	2
1.6 Applicable Documents	3
1.6.1 IPC	
1.6.2 American Society of Mechanica	
Engineers	
1.7 Dimensions and Tolerances	
1.8 Terms and Definitions	
1.9 Revision Level Changes	
1.10 Workmanship	
2 Externally Observable Characteristics	; 5
2.1 Printed Board Edges	
2.1.1 Burrs	
2.1.1.1 Nonmetallic Burrs	
2.1.1.2 Metallic Burrs 2.1.2 Nicks	
2.1.2 Nicks	
2.2 Base Material Surface	
2.2.1 Weave Exposure	
2.2.2 Weave Texture	
2.2.3 Mechanically Induced	
Disrupted Fibers	
2.2.4 Surface Voids	
2.3 Base Material Subsurface	
2.3.1 Measling 2.3.2 Crazing	
2.3.3 Delamination/Blister	
2.3.4 Foreign Inclusions	
2.4 Solder Coatings and Fused Tin Lead	
2.4.1 Nonwetting	
2.4.2 Dewetting	31
2.5 Holes - Plated-Through - General	33
2.5.1 Nodules/Rough Plating	33
2.5.2 Pink Ring	
2.5.3 Voids – Copper Plating	
2.5.4 Voids – Finished Coating	
2.5.5 Lifted Lands – (Visual)	
2.5.6 Cap Plating of Filled Holes – (Visual)	
2.5.7 Back-Drilled Holes – (Visual)	

ii	2.6		Jnsupported	
1			Haloing	
1	2.7	-	ard Contacts	43
1		2.7.1	Surface Plating – Printed Board	
			Edge Connector Lands	43
1		2.7.1.1	Surface Plating – Edge Connector	. –
1			Lands (Gap/Overlap Area)	
2		2.7.2	Burrs on Edge-Board Contacts	
3		2.7.3	Adhesion of Overplate	47
3	2.8	Marking		49
		2.8.1	Etched Marking	50
4		2.8.2	Ink Marking	52
4	2.9	Solder M	ask	54
4		2.9.1	Coverage Over Conductors	
			(Skip Coverage)	55
4		2.9.2	Registration to Holes (All Finishes)	56
4		2.9.3	Registration to Rectangular	
5			Surface Mount Lands	57
5		2.9.3.1	Registration to Round Surface	
5			Mount Lands (BGA) – Solder	
5			Mask-Defined Lands	58
7		2.9.3.2	Registration to Round Surface	
3			Mount Lands (BGA) – Copper-	
9			Defined Lands	59
)		2.9.3.3	Registration to Round	
1			Surface Mount Lands	
			(BGA) – (Solder Dam)	60
2		2.9.4	Blisters/Delamination	61
٦ ٦		2.9.5	Adhesion (Flaking or Peeling)	63
3		2.9.6	Waves/Wrinkles/Ripples	64
4		2.9.7	Tenting (Via Holes)	
5		2.9.8	Soda Strawing	
C	2.10	Pattern [Definition – Dimensional	
2	20	2.10.1	Conductor Width and Spacing	
5			Conductor Width	
3			Conductor Spacing	
C		2.10.2	External Annular Ring –	10
C		2.10.2	Measurement	71
1		2.10.3	External Annular Ring – Supported	, ,
3		2.10.0	Holes and Microvia Capture Land	72
3		2.10.4	External Annular Ring –	12
3 4		2.10.4	Unsupported Holes	74
5		2.10.5	Surface Plating – Rectangular	, ,
5		2.10.0	Surface Mount Lands	75
7		2.10.6	Surface Plating – Round Surface	10
		2.10.0	Mount Lands (BGA)	77
3		2.10.7	Surface Plating – Wire Bond Pads	
)	2.11		Surface Flating – Wire Bond Flats	
5	2 .11	1 1011035		01

Table of Contents (cont.)

3	Interna	Ily Observable Characteristics
3.1	Dielect	ric Materials 84
	3.1.1	Laminate Voids/Cracks
		(Outside Thermal Zone)
	3.1.2	Registration/Conductor to Holes 87
	3.1.3	Clearance Hole, Unsupported,
		to Power/Ground Planes
	3.1.4	Dielectric Material, Clearance,
	3.1.5	Metal Plane for Supported Holes 89
	3.1.5 3.1.6	Delamination/Blister
	3.1.6.1	
	3.1.6.2	Etchback
	3.1.6.3	
	3.1.7	Layer-to-Layer Spacing
	3.1.8	Resin Recession 101
	3.1.9	Hole Wall Dielectric/Plated Barrel
	0.1.0	Separation (Hole Wall Pullaway) 102
3.2	Conduc	ctive Patterns – General 103
	3.2.1	Etching Characteristics 105
	3.2.2	Print and Etch 107
	3.2.2.1	Overhang 108
	3.2.3	External Conductor Thickness
		(Foil Plus Plating) 109
	3.2.4	Non-Plated Layer Copper Foil Thickness 110
	3.2.5	Solder Mask Thickness 111
3.3		Through Holes – General
0.0	3.3.1	Copper Plating Voids 114
	3.3.2	Plating Nodules 115
	3.3.3	Plating Folds/Inclusions 116
	3.3.4	Wicking 118
	3.3.4.1	Wicking, Clearance Holes 119
	3.3.5	Innerlayer Inclusions 120
	3.3.6	Innerlayer Separation – Vertical
		(Axial) Microsection 121
	3.3.7	Innerlayer Separation – Horizontal
		(Transverse) Microsection 123
	3.3.8	Plating Separation 124
	3.3.9	Foil Crack – (Internal Foil) "C" Crack
	3.3.10	Foil Crack (External Foil)
	0.0110	"A," "B," "D" Cracks 127
	3.3.11	Plating Crack (Barrel) "E" Crack 128
	3.3.12	Plating Crack – (Corner)
		"F" Crack 129
	3.3.13	Plating Microanomalies 130
	3.3.14	Annular Ring – Internal Layers 131

	3.3.15	Annular Ring – Microvia to	
	0.0.10	Target Land	134
	3.3.16	Microvia Target Land Contact Dimension	136
	3.3.17	Microvia Target Land Piercing	
	3.3.18	Lifted Lands – (Cross-Sections)	
	3.3.19	Copper Plating Thickness – Hole Wall	141
	3.3.20	Copper Wrap Plating	
	3.3.21	Copper Cap Plating of	
		Filled Holes	145
	3.3.22	Plated Copper Filled Vias (Through,	
		Blind, Buried and Microvia)	147
	3.3.23	Material Fill of Through, Blind,	
		Buried and Microvia Structures	1 1 0
	0.0.04	(Other than Copper Plating)	149
	3.3.24	Back-Drilled Holes (Microsection Evaluation)	151
	3.3.25	Solder Coating Thickness	101
	0.0.20	(Only When Specified)	152
3.4	Plated-	Through Holes – Drilled	
••••	3.4.1	Burrs	
	3.4.2	Nailheading	
3.5	Plated-	Through Holes – Punched	
		-	
	3.5.1	Roughness and Nodules	157
	3.5.1 3.5.2	Flare	
4	3.5.2	•	158
4 4.1	3.5.2 Miscell	Flare	158 159
-	3.5.2 Miscell	Flare aneous e and Rigid-Flex Printed Boards Coverlay Coverage – Coverfilm	158 159 159
-	3.5.2 Miscell Flexible	Flare aneous and Rigid-Flex Printed Boards Coverlay Coverage – Coverfilm Separations	158 159 159
-	3.5.2 Miscella Flexible 4.1.1	Flare aneous e and Rigid-Flex Printed Boards Coverlay Coverage – Coverfilm	158 159 159 160
-	3.5.2 Miscella Flexible 4.1.1 4.1.2	Flare aneous e and Rigid-Flex Printed Boards Coverlay Coverage – Coverfilm Separations Coverlay/Covercoat Coverage –	158 159 159 160
-	3.5.2 Miscella Flexible 4.1.1 4.1.2 4.1.2.1	Flare aneous and Rigid-Flex Printed Boards Coverlay Coverage – Coverfilm Separations Coverlay/Covercoat Coverage – Adhesives Adhesive Squeeze-Out – Land Area	158 159 159 160 162
-	3.5.2 Miscella Flexible 4.1.1 4.1.2 4.1.2.1	Flare aneous e and Rigid-Flex Printed Boards Coverlay Coverage – Coverfilm Separations Coverlay/Covercoat Coverage – Adhesives Adhesive Squeeze-Out –	158 159 159 160 162 162
-	3.5.2 Miscella Flexible 4.1.1 4.1.2 4.1.2.1	Flare aneous and Rigid-Flex Printed Boards Coverlay Coverage – Coverfilm Separations Coverlay/Covercoat Coverage – Adhesives Adhesive Squeeze-Out – Land Area Adhesive Squeeze-Out –	158 159 160 162 162 163
-	3.5.2 Miscella Flexible 4.1.1 4.1.2 4.1.2.1 4.1.2.2	Flare aneous and Rigid-Flex Printed Boards Coverlay Coverage – Coverfilm Separations Coverlay/Covercoat Coverage – Adhesives Adhesive Squeeze-Out – Land Area Adhesive Squeeze-Out – Foil Surface Access Hole Registration for	158 159 160 162 162 163 164
-	3.5.2 Miscella Flexible 4.1.1 4.1.2 4.1.2.1 4.1.2.2 4.1.3	Flare aneous and Rigid-Flex Printed Boards Coverlay Coverage – Coverfilm Separations Coverlay/Covercoat Coverage – Adhesives Adhesive Squeeze-Out – Land Area Adhesive Squeeze-Out – Foil Surface Access Hole Registration for Coverlay and Stiffeners	158 159 159 160 162 162 163 164
-	3.5.2 Miscella Flexible 4.1.1 4.1.2 4.1.2.1 4.1.2.2 4.1.3 4.1.4	Flare aneous and Rigid-Flex Printed Boards Coverlay Coverage – Coverfilm Separations Coverlay/Covercoat Coverage – Adhesives Adhesive Squeeze-Out – Land Area Adhesive Squeeze-Out – Foil Surface Access Hole Registration for Coverlay and Stiffeners Plating Anomalies Stiffener Bonding Transition Zone, Rigid Area to	158 159 159 160 162 162 163 164 165 166
-	3.5.2 Miscella Flexible 4.1.1 4.1.2 4.1.2.1 4.1.2.2 4.1.3 4.1.4 4.1.5 4.1.6	Flare aneous	158 159 159 160 162 162 163 164 165 166
-	3.5.2 Miscella Flexible 4.1.1 4.1.2 4.1.2.1 4.1.2.2 4.1.3 4.1.3 4.1.4 4.1.5	Flare	158 159 159 160 162 162 163 164 165 166 167
-	3.5.2 Miscella Flexible 4.1.1 4.1.2 4.1.2.1 4.1.2.2 4.1.3 4.1.4 4.1.5 4.1.6	Flare aneous	158 159 159 160 162 162 163 164 165 166 167
-	3.5.2 Miscella Flexible 4.1.1 4.1.2 4.1.2.1 4.1.2.2 4.1.3 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.1.8	Flare aneous and Rigid-Flex Printed Boards Coverlay Coverage – Coverfilm Separations Coverlay/Covercoat Coverage – Adhesives Adhesive Squeeze-Out – Land Area Adhesive Squeeze-Out – Foil Surface Access Hole Registration for Coverlay and Stiffeners Plating Anomalies Stiffener Bonding Transition Zone, Rigid Area to Flexible Area Solder Wicking/Plating Penetration Under Coverlay	158 159 159 160 162 162 163 164 165 166 167

Table of Contents (cont.)

	4.1.8.2	Laminate Integrity – Rigid-Flex Printed Board	171
	4.1.9	Etchback (Type 3 and Type 4 Only)	172
	4.1.10	Smear Removal (Type 3 and 4 Only)	173
	4.1.11	Trimmed Edges/Edge Delamination	174
	4.1.12	Silver Film Integrity	176
4.2	Metal C	ore Printed Boards	178
	4.2.1	Type Classifications	179
	4.2.2	Spacing Laminated Type	180
	4.2.3	Insulation Thickness, Insulated Metal Substrate	181
	4.2.4	Insulation Material Fill, Laminated Type Metal Core	182
	4.2.5	Cracks in Insulation Material Fill, Laminated Type	183
	4.2.6	Core Bond to Plated-Through Hole Wall	184
4.3	Flush P	rinted Boards	185
	4.3.1	Flushness of Surface Conductor	185
5	Cleanlin	ness Testing	186
5.1	Soldera	bility Testing	187
	5.1.1	Plated-Through Holes (Applicable to Solder Float Test)	188
5.2	Electric	al Integrity	190

This Page Intentionally Left Blank

Introduction

1.1 SCOPE

This document describes the target, acceptable, and nonconforming conditions that are either externally or internally observable on printed boards. It represents the visual interpretation of minimum requirements set forth in various printed board specifications, e.g.; IPC-6010 series, J-STD-003, etc.

1.2 PURPOSE

The visual illustrations in this document portray specific criteria of the requirements of current IPC specifications. In order to properly apply and use the content of this document, the printed board should comply with the design requirements of the applicable IPC-2220 series document and the performance requirements of the applicable IPC-6010 series document. In the event the printed board does not comply with these or equivalent requirements, then the acceptance criteria should be as agreed between user and supplier (AABUS).

1.3 APPROACH TO THIS DOCUMENT

Characteristics are divided into two general groups:

- Externally Observable (section 2)
- Internally Observable (section 3)

"Externally observable" conditions are those features or imperfections which can be seen and evaluated on or from the exterior surface of the board. In some cases, such as voids or blisters, the actual condition is an internal phenomenon and is detectable from the exterior.

"Internally observable" conditions are those features or imperfections that require microsectioning of the specimen or other forms of conditioning for detection and evaluation. In some cases, these features may be visible from the exterior and require microsectioning in order to assess acceptability requirements.

Specimens should be illuminated during evaluation to the extent needed for effective examination. The illumination should be such that no shadow falls on the area of interest except those shadows caused by the specimen itself. It is recommended that polarization and/or dark field illumination be employed to prevent glare during the examination of highly reflective materials.

The illustrations in this document portray specific criteria relating to the heading and subheading of each page, with brief descriptions of the acceptable and nonconforming conditions for each product class. (See 1.4.) The visual quality acceptance criteria are intended to provide proper tools for the evaluation of visual anomalies. The illustrations and photographs in each situation are related to specific requirements. The characteristics addressed are those that can be evaluated by visual observation and/or measurement of visually observable features.

Supported by appropriate user requirements, this document should provide effective visual criteria to quality assurance and manufacturing personnel.

This document cannot cover all of the reliability concerns encountered in the printed board industry; therefore, attributes not addressed in this issue **shall** be AABUS. The value of this document lies in its use as a baseline document that may be modified by expansions, exceptions, and variations which may be appropriate for specific applications.

When making accept and/or reject decisions, the awareness of documentation precedence must be maintained.

This document is a tool for observing how a product may deviate due to variation in processes. Refer to IPC-9191.

IPC-A-600 provides a useful tool for understanding and interpreting Automated Inspection Technology (AIT) results. AIT may be applicable to the evaluation of many of the dimensional characteristics illustrated in this document.

IPC-9121 is a useful troubleshooting guideline for problems, causes and possible corrective actions related to printed board manufacturing processes.

1.4 CLASSIFICATION

This standard recognizes that electrical and electronic products are subject to classifications by intended end-item use. Three general end-product classes have been established to reflect differences in producibility, complexity, functional performance requirements, and verification (inspection/test) frequency. It should be recognized that there may be overlaps of product between classes.

3.2.5 Solder Mask Thickness

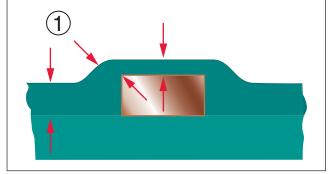


Figure 325a Note 1: Tmin, if specified.

Figure 325b

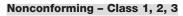

Figure 325c

Figure 325d

Target Condition/Acceptable - Class 1, 2, 3

• Specified: The solder mask thickness meets the thickness requirements on the procurement documentation (cannot be visually assessed).

• Observed conditions do not meet procurement documentation requirements.

Visual observations made on cross-sections only.

3.3.5 Innerlayer Inclusions

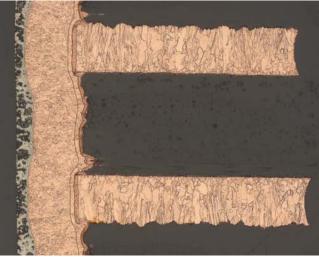


Figure 335a

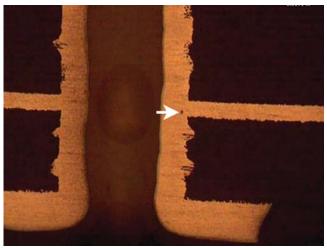


Figure 335b

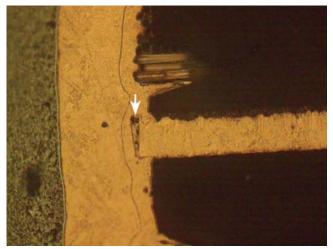


Figure 335c

Target Condition - Class 1, 2, 3

• No inclusions present.

Acceptable - Class 2, 3

• No inclusions evident.

Acceptable – Class 1

• Inclusions(s) on one side of hole wall at each land location on no more than 20% of each available land.

Nonconforming – Class 1, 2, 3

• Observed conditions either do not meet or exceed above criteria.

Visual observations made on cross-sections only.

4.1.7 Solder Wicking/Plating Penetration Under Coverlay

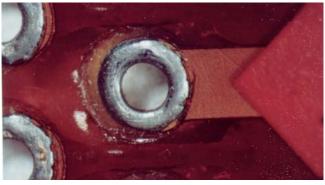


Figure 417a

Figure 417b

Target Condition – Class 1, 2, 3

- Solder or plating on land covers all exposed metal and stops at coverlay.
- Solder wicking or plating penetration does not extend into the bend or flex transition area.

Acceptable – Class 3

- Solder wicking/plating penetration does not extend under coverlay more than 0.3 mm [0.0118 in].
- Solder wicking or plating penetration does not extend into the bend or flex transition area.
- Meets conductor spacing requirements.

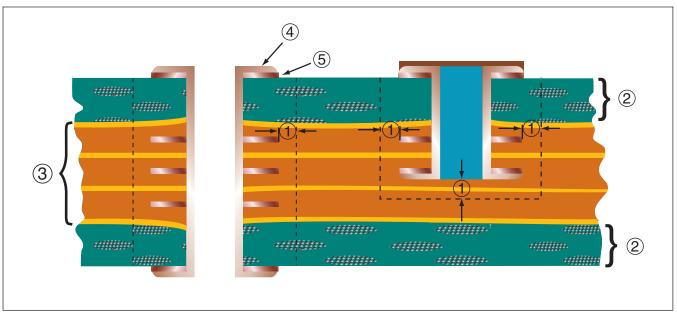
Acceptable – Class 2

- Solder wicking/plating penetration does not extend under coverlay more than 0.5 mm [0.0197 in].
- Solder wicking or plating penetration does not extend into the bend or flex transition area.
- Meets conductor spacing requirements.

Figure 417c

Acceptable – Class 1

- Solder wicking/plating penetration AABUS.
- Solder wicking or plating penetration does not extend into the bend or flex transition area.
- Meets conductor spacing requirements.


Nonconforming – Class 1, 2, 3

• Observed conditions do not meet or exceed above criteria.

4.1 FLEXIBLE AND RIGID-FLEX PRINTED BOARDS

4.1.8 Laminate Integrity

This section shows the voids and cracks that may be present in flexible or rigid-flex printed boards. The requirements for the flexible portion differ from the rigid-flex portion and are defined in the text even though only a rigid-flex section is shown.

Figure 418a

- Note 1: Thermal zones are defined by a 0.08 mm [0.0031 in] perimeter around the entirety of each via or through-hole structure (including internal and external lands). For lands that are increased in size to accommodate an offset (staggered) structure, the thermal zone is governed by the offset (staggered) structure.
- Note 2. Rigid Printed Board Area.
- Note 3. Flexible Printed Board Area.
- Note 4. Plating.
- Note 5. Copper Foil.

Note 6: Laminate voids and cracks fully encapsulated within the thermal zones are not evaluated on specimens which have been exposed to thermal stress or rework simulation.

Note 7: Multiple voids or cracks between PTHs in the flex area and in the same plane shall not have a combined length exceeding the limit.

Target Condition - Class 1, 2, 3

• No laminate voids or cracks.

5.1.1 Plated-Through Holes (Applicable to Solder Float Test)

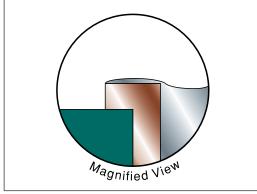


Figure 511a

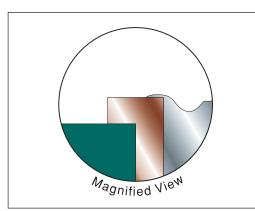


Figure 511b

Figure 511c

Target Condition – Class 1, 2, 3

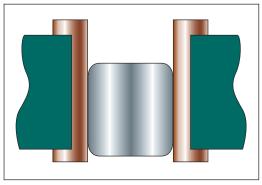
- Solder has risen in all plated holes.
- There is no nonwetted or exposed base metal.

Acceptable – Class 3 (for printed boards of thickness \leq 3.0 mm [0.118 in])

- Solder has risen in all plated holes.
- Solder fully wets the walls of the hole.
- There is no evidence of nonwetting or exposed base metal on any PTH.

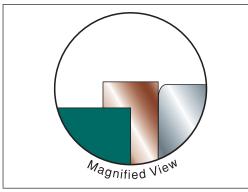
Acceptable - Class 1, 2

(for printed boards of thickness \leq 3.0 mm [0.118 in])


- Solder fully wets the wall area of the PTH holes.
- Solder **shall** plug holes less than 1.5 mm [0.0591 in] diameter (complete filling is not necessary).

Acceptable – Class 2, 3

(for printed boards of thickness > 3.0 mm [0.118 in])


• Hole fill \geq 75%.

5.1.1 Plated-Through Holes (Applicable to Solder Float Test) (cont.)

Acceptable – Class 1 (for printed boards of thickness > 3.0 mm [0.118 in]) • Hole fill \geq 50%.

Figure 511d

Nonconforming – Class 1, 2, 3 (for printed boards of thickness \leq 3.0 mm [0.118 in])

• Observed conditions do not meet or exceed above criteria.

Figure 511e

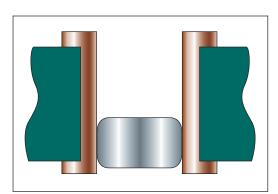


Figure 511f

Nonconforming - Class 1, 2, 3 (for printed boards of thickness > 3.0 mm [0.118 in])

• Observed conditions do not meet or exceed above criteria.

版权等原因,不能全部发布。 此为样本文件,如需更多交流:

www.stdpdf.com

www.file123.top

1395833280@qq.com

微信: IPCSTD

The purpose of this form is to keep current with terms routinely used in the industry and their definitions. Individuals or companies are invited to comment. Please complete this form and return to:

IPC 3000 Lakeside Drive, Suite 105N Bannockburn, IL 60015-1249 Fax: 847 615.7105

ANSI/IPC-T-50 Terms and Definitions for Interconnecting and Packaging Electronic Circuits Definition Submission/Approval Sheet

SUBMITTOR INFORMATION:

Name:	
Company:	
City:	
State/Zip:	
Telephone:	
Date:	

□ This is a **NEW** term and definition being submitted.

□ This is an **ADDITION** to an existing term and definition(s).

□ This is a **CHANGE** to an existing definition.

Term	Definition

If space not adequate, use reverse side or attach additional sheet(s).

Artwork:
Not Applicable
Required
To be supplied
Included: Electronic File Name:

Document(s) to which this term applies: ____

Committees affected by this term:

Office Use		
IPC Office	Committee 2-30	
Date Received:	Date of Initial Review:	
Comments Collated:	Comment Resolution:	
Returned for Action:	Committee Action: Accepted Rejected	
Revision Inclusion:	Accept Modify	
IEC Clas	ssification	
Classification Code • Serial Number		
Terms and Definition Committee Final Approval Authori	zation:	
Committee 2-30 has approved the above term for relea	se in the next revision.	
Name:	Committee: IPC 2-30 Date:	

Standard Improvement Form

The purpose of this form is to provide the Technical Committee of IPC with input from the industry regarding usage of the subject standard. Individuals or companies are invited to submit comments to IPC. All comments will be collected and dispersed to the appropriate committee(s). If you can provide input, please complete this form and return to: IPC 3000 Lakeside Drive, Suite 105N Bannockburn, IL 60015-1249 Fax: 847 615.7105

E-mail: answers@ipc.org www.ipc.org/standards-comment

1. I recommend changes to the following:

____ Requirement, paragraph number _____

____ Test Method number _____, paragraph number _____

The referenced paragraph number has proven to be:

____ Unclear ____ Too Rigid ____ In Error

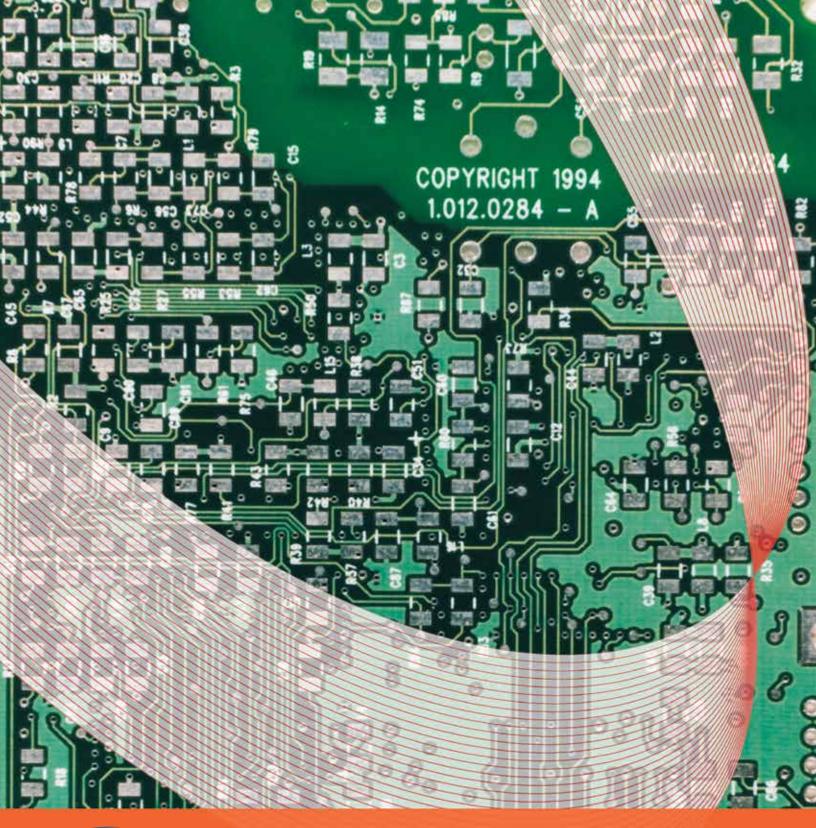
___ Other ____

2. Recommendations for correction:

3. Other suggestions for document improvement:

Submitted by:	
Name	Telephone
Company	E-mail
Address	
City/State/Zip	Date

IPC-A-600K


emerging

Experience SBENEFITS OF JOINING THE ELECTRONICS INDUSTRY'S PREMIER ASSOCIATION

Expand your company's resources and influence in the electronics industry.

- Stay Current
- Get Connected
- Shape the Industry
- Train Your Staff
- Contain Costs
- Join the leaders in IPC
- Market Your Business

Learn more about IPC membership and apply online at **www.ipc.org/membership** or contact the Member Success team at **membership@ipc.org**.

BUILD ELECTRONICS BETTER

3000 Lakeside Drive, Suite 105 N Bannockburn, IL 60015 USA

+1 847-615-7100 **tel** +1 847-615-7105 **fax www.ipc.org**

ISBN # 978-1-951577-48-3