LVDS — 低压差分信号必知必会

随着数据传输速率越来越高,现在计算机系统中的数据传输接口基本上都串行化了,像USB、PCIe、SATA、DP等等外部总线将并行总线挤压到只剩下内存总线这个最后的堡垒。当然,就算是并行传输总线最后的倔强DDR也在不断吸收SERDES上的技术来提升自己,尤其是均衡器(Equalization,EQ)技术,在DDR5标准中,DRAM将被指定涵盖DFE(判决反馈均衡)能力。

随着信号速率的提高,在系统同步接口方式中,有几个因素限制了有效数据窗口宽度的继续增加。

  • 时钟到达两个芯片的传播延时不相等(clock skew)
  • 并行数据各个bit 的传播延时不相等(data skew)
  • 时钟的传播延时和数据的传播延时不一致(skew between data and clock)

要提高接口的传输带宽有两种方式,一种是提高时钟频率,一种是加大数据位宽。那么是不是可以无限制的增加数据的位宽呢?这就要牵涉到另外一个非常重要的问题–同步开关噪声(SSN),数据位宽的增加,SSN 成为提高传输带宽的主要瓶颈。

由于信道的非理想特性,信号从Tx通过FR4 PCB板传输到Rx,这中间会有信号插损、回损、近/远端串扰,再继续提高频率,信号会严重失真,这就需要采用均衡和数据时钟相位检测等技术,这也就是SerDes所采用的技术。

单端信号和差分信号之间的差异

单端信号即用一根走线来传输信号,信号由相对于地参考平面(0V GND)的电平来确定逻辑“ L”和逻辑“ H”,例如TTL接口或CMOS接口,是单端信号。

随着速率的提高,单端信号的上升/下级沿也变得陡峭,因此,输出开关噪声会导致信号产生过冲和下冲,并且当多位信号同时转换时,还要考虑地弹(ground bounce)问题,同时,单端信号以参考地平面作为信号回流路径,这也为Layout带来了挑战,由传输线阻抗不匹配引起的反射效应会变得非常严重。

差分信号

差分信号有别于单端信号一根信号线传输信号然后参考GND作为高(H)、低(L)逻辑电平的参考并作为镜像流量路径的做法,差分传输在两根传输线上都传输信号,这两个信号的振幅相等,相位相差180度,极性相反,互为耦合。

差分信号的优点

差分信号的第一个好处是,因为你在控制「基准」电压,所以能够很容易地识别小信号。在一个参考地做「0 V」基准的单端信号传输系统里,测量信号的精确值依赖系统内「0 V」的一致性。信号源和信号接收器距离越远,他们局部地的电压值之间有差异的可能性就越大。从差分信号恢复的信号值在很大程度上与「地」的精确值无关,而在某一范围内便可。

差分信号的第二个主要好处是,它对外部电磁干扰(EMI)是高度免疫的。一个干扰源几乎相同程度地影响差分信号对的每一端。既然电压差异决定信号值,这样将忽视在两个导体上出现的任何同样干扰。除了对干扰不大灵敏外,差分信号比单端信号生成的EMI还要少。

差分信号提供的第三个好处是,在一个单电源系统,能够从容精确地处理双极信号。为了处理单端,单电源系统的双极信号,我们必须在地和电源干线之间某任意电压处(通常是中点)建立一个虚地。用高于虚地的电压来表示正极信号,低于虚地的电压来表示负极信号。接下来,必须把虚地正确地分布到整个系统里。而对于差分信号,不需要这样一个虚地,这就使我们处理和传播双极信号有一个高真度,而无须依赖虚地的稳定性。

随着集成电路的发展和对更高数据速率的要求,低压供电成为急需。降低供电电压不仅减少了高密度集成电路的功率消耗,而且减少了芯片内部的散热,有助于提高集成度。减少供电电压和逻辑电压摆幅的一个极好例子是低压差分信号(Low Voltage Differential Signaling LVDS)。

低电压差分信号(LVDS)是一种高速点到点应用通信标准。 多点LVDS (M-LVDS)则是一种面向多点应用的类似标准。LVDS和M-LVDS均使用差分信号,通过这种双线式通信方法,接收器将根据两个互补电信号之间的电压差检测数据。这样能够极大地改善噪声抗扰度,并将噪声辐射降至最低。

LVDS是一种用于替代发射极耦合逻辑(ECL)或正发射极耦合逻辑(PECL)的低功 耗逻辑 。LVDS的主要标准是TIA/EIA-644。有时也会对LVDS使用另一种标准,即IEEE 1596.3—SCI(可扩展一致性接口)。LVDS广泛用于高速背板、电缆和板到板数据传输与时钟分配,以及单个PCB内的通信链路。

LVDS的优势包括

  • 通信速度高达1 Gbps或以上
  • 电磁辐射更低
  • 抗扰度更高
  • 低功耗工作
  • 共模范围允许高达±1的接地失调差额

M-LVDS

面向多点低电压差分信号(M-LVDS)的标准TIA/EIA-899将LVDS延伸到用于解决多点应用中的问题。相对于TIA/EIA-485 (RS-485)或控制器局域网(CAN),M-LVDS能够以更低的功耗实现更高速度的通信链路。

M-LVDS相对于LVDS的额外特性包括

  • 驱动器输出强度更高
  • 跃迁时间可控
  • 共模范围更广
  • 面向总线空闲条件提供故障安全接收器选项

为什么使用LVDS或M-LVDS?

图1中将LVDS和M-LVDS与其他多点和点到点协议进行了比较。两种标准都有低功耗要求。LVDS和M-LVDS的特征是在差分电压摆幅较低的情况下实现差分信号。相对于LVDS,M-LVDS指定了更高的差分输出电压,以便允许来自多点总线的更高负载。

两种协议都是面向高速通信设计的。典型应用环境下会采用PCB走线或较短的有线/背板链路。LVDS的共模范围就是针对这些应用而设计。相对于LVDS,M-LVDS扩展了其共模范围,允许多点拓扑结构中具有额外噪声。

LVDS/M-LVDS应用考虑

  • 总线类型和拓扑结构
  • 时钟分配应用
  • LVDS/M-LVDS信号的特性
  • 端接和PCB布局
  • 抖动和偏斜
  • 数据编码和同步
  • 隔离

老wu这里整理了TI的《LVDS 用户手册》以及ADI的《LVDS和M-LVDS电路实施指南》以及若干LVDS PCB Layout Guide 文档,需要的同学可以移步老wu的网盘下载。

如何下载LVDS必知必会资料

关注吴川斌的博客公众号

在公众号里给老吴发消息:

下载|LVDS必知必会资料

或者

下载|600042

建议复制粘贴过去不会码错字哟,O(∩_∩)O~

老wu便会将 LVDS相关的参考资料下载链接发给您啦,O(∩_∩)O~

文章写得好 赏颗六味地黄丸补补

原创文章,转载请注明: 转载自 吴川斌的博客 https://www.mr-wu.cn

本文链接地址: LVDS — 低压差分信号必知必会 https://www.mr-wu.cn/understanding-serial-lvds-capture/

分享到微信
使用微信扫码将网页分享到微信

推荐文章

6 条评论

  • MJ

    2019年10月31日

    学习了

    • xfire

      2019年11月2日

      谢谢关注 😘

  • 一场大雨

    2019年10月29日

    赞!

    • xfire

      2019年10月29日

      谢谢关注 😘

  • 6点6

    2019年10月22日

    正在学习LVDS 很棒的资料 码了

    • xfire

      2019年10月22日

      谢谢关注 😘

神评一下

你可以从微信分享这篇文章

只需要简单两步

1.点击右上角

2.选择分享到朋友圈